

Grid documentation

Welcome to the documentation for using the Grid services at SURFsara [https://surfsara.nl/]. The information in this tutorial will help you get started with the Grid, learn best techniques to successfully port your application to the Grid infrastructure and stay up-to-date with our system developments. We welcome your comments at helpdesk@surfsara.nl or your contribution to help us improve the documentation.

Need help?

Do you need help with this tutorial? We are more than willing to assist! Just contact us at helpdesk@surfsara.nl.

General

	About the Grid

	Dutch National Grid

	Grid services

	How to get access

Basics

	Prerequisites
	Preparation

	Get a User Interface account

	Get a Grid certificate

	Join a Virtual Organisation

	First Grid job with Dirac
	Grid job lifecycle

	Dirac proxy creation

	Describe your job in a JDL file

	Submit the job to the Grid

	Track the job status

	Retrieve the output

	Recap & Next Steps

Advanced topics

	Grid software

	Grid storage

	Grid job requirements

	Grid certificates

	Grid host certificates

Best practices

	Parametric jobs

	Bootstrap application

	Pilot jobs

	GPU jobs

Service implementation

	Downtimes and maintenances

	Statistics and monitoring

Tutorials

	MOOC - Introduction to Grid Computing

	gLite tutorial 2008 [http://www.dutchgrid.nl/events/tutorial08/agenda/Tutorial2008Handout.pdf]

Frequently asked questions

	Frequently asked questions

	Troubleshooting

	Documentation how-to

	Cookiebeleid

Indices and tables

	Index

	Module Index

	Search Page

About the Grid

In this page you will find some general information about the Grid, how it works and what is suited for:

Contents

	About the Grid

	Introduction to Grid

	To use the Grid or not

	How it works

Introduction to Grid

The Grid is a loosely coupled collection of heterogeneous resources with a large variety in purpose and reliability. The Grid consists of multiple geographically distributed compute clusters interconnected with fast network. Grid computing is different from conventional high performance computing such as cluster computing in that Grid systems typically have each processor core perform an independent task.

More about Cluster computing basics?

See also

Check out our mooc video Cluster Computing

In addition, Grid clusters are not exclusively connected to their own storage facilities but can be accessed transparently from all Grid compute clusters, and as such form a virtual supercluster. Grid systems and their applications are more scalable than classic clusters.

The Grid is especially suited, therefore, to applications that cannot be solved in a single cluster within a reasonable timeframe. Common examples are the Large Hadron Collider (LHC) experiments, large-scale DNA analyses and Monte-Carlo simulations.

To use the Grid or not

Grid computing is a form of distributed computing which can be very powerful when applied correctly. Grid is best suited for applications with a data-parallel nature that require many simultaneous independent jobs. With the help of the Grid, large scale computational problems can be solved and large amounts of data can be handled and stored.

Note

The Grid suits applications that can be split up relatively easily in multiple, independent parts or else embarrassingly parallel jobs.

Other HPC options

The Grid will be an interesting service if you are faced with workloads that concern hundreds of thousands of core hours and/or many terabytes of data. For other applications that concern small data or compute requirements, please have a look for other suitable HPC systems [https://www.surf.nl/en/services-and-products/life-science-grid/portfolio-compute-services/index.html] at SURFsara.

Job submission has a relatively high overhead. Submitting a “hello world” program may take minutes. Your data and your software must be available on the worker nodes, which requires careful planning of the job workflow. With the size of the job collections typical for the Grid, and submitting hundreds or even thousands jobs simultaneously, it may become a challenge to check your jobs for status and reschedule based on judgement of failures and their causes. We offer tools to help you automate these actions (see Pilot jobs), however, porting of your solution to the Grid will always require time and effort to set up. Our experienced consultants are available for assistance and to help you make the right decisions right from the beginning.

The Grid infrastructure is able to accommodate a variety of communities and scientific fields, each with their own type of application and requirements, and without mutual interference. Typical Grid applications are:

	Massive data processing workloads.

	Large computational job collections that require a minimal time to completion.

	Projects that require collaboration and resource sharing with national or international partners.

How it works

As a user you connect to the Grid by connecting to a so-called User Interface (UI) system via secure shell. Once you have received the right credentials for a UI (see Preparation) you are set to go.

In general your task needs to be split into smaller units, called jobs, that each fit a certain set of boundary conditions in terms of resources (typically runtime, memory, disk size). For the jobs to be executed on the Grid, a job slot needs to be selected based on the boundary conditions that suit the requirements for these jobs. The way to do this is to describe each job in terms of a Job Description Language (JDL), where you list which program should be executed and the requirements of the job slot to run the job. You can use the input and output sandboxes to send small data files or scripts with your job.

More about Grid basics?

See also

Check out our mooc video Grid Computing Overview

Each job is then submitted as a JDL file to the Workload Management System (WMS). The WMS is a resource broker that knows which Grid compute clusters are ready to accept your job and fulfil its requirements. Each Grid cluster consists of a Compute Element (CE) and several Worker Nodes (WNs). The CE is a scheduler within each Grid cluster that communicates with the WMS about availability of the job slots in the cluster, and accepts and distributes the jobs to the available compute nodes in the cluster (these are called Worker Nodes or WNs). These WNs are the machines which do the actual work. When finished with a job they will report back to the CE, which in turn will inform the WMS about the status of the job.

In addition, the Grid’s interconnected clusters each have a storage server, called a Storage Element (SE), which can hold the input and output data of the jobs. Data on the SEs can be replicated at multiple sites if needed for scale-out scenarios. In general, all SEs offer disk storage for the staging of datasets before and after job execution. In addition, a central Grid storage facility (see dCache) also provides tape storage for long-term storage of datasets that need to be preserved.

In short, as a user you submit your jobs to execute your calculation or analysis code and to handle your input and output data. The WMS distributes the jobs to the clusters and node that are most suitable for these jobs. When the jobs are finished, you can collect the results from the SE that was selected to hold the output data or keep them for later use on the central Grid storage facility.

[image: ../../_images/job_flow.png]

Dutch National Grid

In this page you will find information about the Dutch National Grid Infrastructure:

Contents

	Dutch National Grid

	About

	National and European

About

The Grid in general consists of a large number and variety of clusters which are distributed all over the Netherlands and abroad. Grid infrastructures in European member states are organised by means of their own National Grid Initiatives (NGIs). SURFsara offers Grid services in collaboration with Nikhef [https://www.nikhef.nl/] and RUG-CIT [http://www.rug.nl/society-business/centre-for-information-technology/], and together we form the Dutch National Grid Initiative (NGI_NL).

The Dutch National Grid Initiative provides the Grid infrastructure to scientists affiliated with Dutch universities and other research institutes, and to international research projects that have established agreements with us.

Grid technology can be used for a variety of purposes and application types, however a subset of the worldwide Grid infrastructure can be dedicated for a specific purpose. For example our Dutch Grid [https://www.surf.nl/en/services-and-products/grid/index.html] infrastructure, which consists of a small number of tightly interconnected clusters, operated under the umbrella of NGI_NL, is very potent in enabling high-throughput processing of large datasets in a minimum amount of time.

National and European

The Dutch National Grid Infrastructure is connected to EGI [http://www.egi.eu/], the European Grid Initiative, which allows Grid users in the Netherlands and abroad easy access to one another’s resources. EGI also supplies central monitoring and security and ensures smooth interoperability of all connected clusters.

Grid services

In this page you will find general information about the SURFsara Grid services and support:

Contents

	Grid services

	About

	Support

About

To deploy your production tasks smoothly on the Grid, our services can be of great value. Our standard Grid services such as the Workload Management System, Compute Elements, Storage Elements, a Logical File Catalog, Virtual Organisation Management Services, and User Interface machines are indispensable for generic use of the Grid infrastructure. Apart from those we have additional services available as an option, that may be beneficial for your type of application.

Our Grid services provide:

	High-throughput processing nodes for job execution

	Access to scalable Grid storage facilities, disk and tape

	Standard Grid Services like User Interfaces, Brokers, and Virtual Organisation management services

	Token Pool Services (Picas Overview) for production run logistics, job collection management, monitoring and control

	Virtual filesystem service Softdrive for centralized software deployment on distributed systems

	Dedicated light paths [https://www.surf.nl/en/services-and-products/surflichtpaden/index.html] : we offer support bridging the last mile between the end points and your data sources.

	Consultancy [https://www.surf.nl/en/services-and-products/consultancy/index.html] : advice and support on getting access, working with Grid certificates, basic job submission, data access methods, best practices, advice on design and optimization of applications for performance improvements, integration with large-scale job-submission frameworks, and international upscaling.

Support

You may request support for our Grid services by contacting us by phone or email. Our dedicated team at SURFsara helpdesk [https://www.surf.nl/en/about-surf/contact/helpdesk-surfsara-services/index.html] is more than willing to assist you for any questions or complaints and carefully take note of your remarks for further improvement of our services.

Check out the detailed information about SURFsara helpdesk [https://www.surf.nl/en/about-surf/contact/helpdesk-surfsara-services/index.html].
Please don’t hesitate to contact us!

How to get access

In this page you will find general information about getting access to the National Dutch Grid infrastructure:

Contents

	How to get access

	Access to the National Dutch Grid

	Estimate your resource needs

Access to the National Dutch Grid

Access to the Dutch Grid clusters allows for:

	submitting Grid jobs to multiple clusters via the Grid middleware

	storing data to the Grid storage

Researchers at SURF-affiliated institutes can apply for compute and storage capacity on the Grid by submitting the SURFsara application form [https://www.surf.nl/en/research-it/apply-for-access-to-compute-services]. For scientists not affiliated to SURF, rates are based on tailor made packages. Specific details on obtaining accounts can be found in the Access Grid [https://www.surf.nl/en/services-and-products/grid/access/index.html] section of our website.

Please contact us at helpdesk@surfsara.nl for any inquiry on our possibilities.

Estimate your resource needs

When you request to use the Grid you do so in the context of a project. A project is set to solve a problem, defined as some goals that you want to achieve, which includes a plan on how you will achieve those goals. For each project a suitable amount of resources will be allocated. You can work together with several people in the same project and using the same resource allocation.

In general, each project resource allocation involves:

	an amount of compute time, measured in core·hours

	an amount of storage space, for disk or tape or both

	a start and end date for your project

In order for us to make a suitable allocation for a project, we need to know what your goals are and how you want to achieve those goals. That is why it is important for you to understand how to estimate the resources for your project.

Not sure how to calculate your resource requirements?

Contact us at helpdesk@surfsara.nl and we can work together on estimating the resources for running your computation.

For a proper estimation of resources requirements it is best to start with a few test runs of the code (if existing) on another system (e.g.: your laptop). The outcome of such tests will in many cases be sufficient to derive a total requirement for your larger-scale production runs. Sometimes a more elaborate process is needed to come to an estimate, for example if the code does not exist yet of if changes to the existing code are still pending. Ideally you have been running a few representative samples of your runs before you file a resource request, in order to have some concrete information ready about the resources needed by your jobs, such as:

	how long it takes to run a representative input scenario

	how much space you need to store input, output and intermediate data

	what the software requirements are (required software tools, libraries, compilers, etc.)

	how many scenarios (jobs) you need to run for a complete analysis

In case you don’t know how to prepare such an inventory, we would be happy to assist you with that.

Prerequisites

This section summarises all the preparations you need to make before you run a simple job on the Grid:

Contents

	Prerequisites

	Preparation

	Get a User Interface account

	Get a Grid certificate

	Join a Virtual Organisation

Preparation

The Grid is a cooperation of many different clusters and research organisations, and as such, there is no centralised user management. Yet, there must be a way for the system to identify you and your work. This is why Grid certificates and Virtual Organisations (VOs) are introduced.

More about Grid prerequisites?

See also

Check out our mooc video Working Environment - Grid prerequisites.

Your digital identity starts with a private key. Only you are allowed to know the contents of this key. Next, you need a Grid certificate, which is issued by a Certificate Authority (CA). The Grid certificate contains your name and your organisation, and it says that the person who owns the private key is really the person mentioned, and that this is certified by the Certificate Authority.

Now this is your identity. Big international cooperations do not want to deal with every user individually. Instead, users become part of Virtual Organisations. To give an analogy, the Grid certificate provides authentication (identity, e.g., like a passport) and the VO provides authorisation (approval, e.g., like a visa). Individual clusters give access and compute time to certain VOs, and if you are a member of a VO, you can run your jobs on that cluster.

More about Grid Security?

See also

Check out our mooc video Grid Certificate - Security.

In order to run your work on the Grid, you have to make three essential steps:

	Get a User Interface account, so that you can interact with the Grid.

	Get a Grid certificate, so that you can be identified on the Grid.

	Join a Virtual Organisation, so that you can run your jobs on the Grid.

The UI account will provide you with the proper environment to submit your jobs to the Grid. The Grid certificate is required to authorise you for using the Grid. Finally, the VO membership is based on your research domain (e.g. lsgrid for Life Scientists) and determines which resources you can use.

These steps are described in this chapter.

Warning

Several of the steps below require to be performed on your web browser. We strongly advice you to use Firefox because other browsers may give you errors in the certificate procedure.

Get a User Interface account

In this section we will describe how to get a User Interface account.

The User Interface (UI) account will provide you with the environment to interact with the Grid. It is your access point to the Grid. You log in to a UI machine via SSH. On this computer you can, amongst others, do the following things: access Grid resources, create proxies, submit jobs, compile programs or prototype your application. For debugging purposes it is good to know that the environment of a user interface is similar to a Grid worker node thus if your code runs on the user interface it will most likely run on a Grid worker node.

To request for a UI account, please send us your request at helpdesk@surfsara.nl and we will give you an account on the SURFsara Grid UI (server name: ui.grid.sara.nl).

Please note that the UI is simply a Linux machine and working on it requires some familiarity with linux commands and remote access methods. If you need help with this, check out our mooc video Working Environment - Remote access.

Get a Grid certificate

Grid certificates are supplied by a Certificate Authority (CA). Users affiliated with Dutch institutes can request a digital certificate either by Sectigo or DutchGrid CA.

How to obtain a Grid certificate?

See also

Find detailed info in our mooc video Obtain a Grid Certificate.

If you are a researcher in the Netherlands we recommended you to request a certificate via Sectigo, by using your institutional login. This is the easiest and fastest way to get a Grid certificate. In cases that the Sectigo option is not applicable, you can request a DutchGrid CA certificate.

Here you can find details for obtaining and installing a Grid certificate:

	Sectigo certificate

	DutchGrid certificate

If you’re not affiliated with a Dutch institute, please find a suitable CA at https://www.igtf.net/pmamap to obtain a Grid certificate from. We also have a list of CAs that are supported on the grid.

Join a Virtual Organisation

More about VOs?

See also

Need to know more about VOs and how to get a membership? Check out our mooc video Virtual Organisations.

A Virtual Organisation or VO is a group of geographically distributed people that have common objectives and that are using shared Grid resources to achieve them. Every Grid user is a member of one or more Virtual Organisations.

In practice your VO membership determines to which resources (compute and storage) you have access to. You are eligible to register for a VO only once you get a valid certificate. The VO that is most suitable for you depends on the specific research area you are in. For example, if you are active in a field associated with the life sciences the lsgrid VO might be most suitable for you. If you still not sure which VO is best for you, then contact us at helpdesk@surfsara.nl to guide you on this.

This section describes how to get a VO membership.

Warning

At this point you must have the certificate successfully installed in your browser. If you don’t have that, go back the previous step.

	Open the link below from the browser where your certificate is installed (UI or laptop). The page will ask you to confirm with your installed browser certificate: https://voms.grid.sara.nl:8443/vomses/

	Select the VO that you are interested for e.g. lsgrid, from the front page listing all the available VOs. If it is unclear to you for which VO you should register, please contact us at helpdesk@surfsara.nl.

	Fill in some of your personal details (name, email, etc.), then read and accept the AUP.

	Check that you have received a verification email titled “Your membership request for VO …” and confirm with the URL, as described in the email.

	You will receive an approval email titled “Your vo membership request for VO lsgrid has been approved” when the VO administrator finally sings your request.

	As soon as your VO membership is approved, the final step is to be added to the Dirac VO user group. For this, please contact us at helpdesk@surfsara.nl.

Once you finish this page instructions successfully, you are set to go and run your First Grid job with Dirac!

Sectigo certificate

This section describes how to obtain and install a Sectigo Grid certificate. This is a prerequisite to get started on the Grid.

Contents

	Sectigo certificate

	Obtain a Sectigo certificate

Obtain a Sectigo certificate

Sectigo allows you to get your Grid certificate instantly from the GEANT Trusted Certificate Service (former was the Terena portal and then Digicert), by using your institutional login (SURFconext [https://www.surf.nl/en/surfconext-global-access-with-1-set-of-credentials]).

The following guide will help you:

	obtain a Sectigo certificate instantly from a portal

	change the certificate formats

	install a Sectigo certificate on your own computer or UI

	install a Sectigo certificate in your browser

Instructions on acquiring and setting up a Sectigo certificate can be found in the step by step guide below. For Grid, make sure you select the type GÉANT Personal Authentication certificate as explained in the guide:
https://ca.dutchgrid.nl/tcs/TCS-enduser-request-guide-NL.pdf

Warning

If you saved the certificate files on your laptop, please make sure that you copy it from your local machine to your .globus directory on the UI.

DutchGrid certificate

This section describes how to obtain and install a DutchGrid Grid certificate. This is a prerequisite to get started on the Grid:

Contents

	DutchGrid certificate

	Obtain a DutchGrid certificate

	Request a DutchGrid certificate

	Retrieve your DutchGrid certificate

	Install a DutchGrid certificate on the UI

	Install a DutchGrid certificate in your browser

	Convert PEM to pkcs12

	Import the certificate to the browser

Obtain a DutchGrid certificate

In case that your institute does not support SURFconext and is not possible to get a Sectigo certificate certificate, then you can apply for a DutchGrid CA certificate. You can request a DutchGrid certificate by launching the JGridstart [http://ca.dutchgrid.nl] tool.

Request a DutchGrid certificate

Note

If you are on macOS, ensure that xquartz [https://www.xquartz.org/] is installed with homebrew.

	Log in to your UI account with X forward enabled, e.g.:

$ssh -Y homer@ui.grid.sara.nl # replace "homer" with your username!

In the case of running on macOS, it may be necessary to specify the path of XAuth in ~/.ssh/config with:

XAuthLocation /opt/X11/bin/xauth

	Download the the jGridstart tool:

$wget https://ca.dutchgrid.nl/start/jgridstart-wrapper-1.18.jar

	Run the wizard:

$java -jar jgridstart-wrapper-1.18.jar

	Follow the wizard instructions. You will typically go through these steps:

	Start the Wizard by pressing Request new .. button

	Generate request by entering your details (name, surname, email, organisation). At this stage you will provide the password for your Grid certificate - make sure you keep this safe!

	Submit request. This will create your private userkey.pem file in your ~/.globus directory.

	Fill in and print the verification form by pressing the display form button. Once you fill in the form, save it locally.

	Close the wizard

	Check your details in the printed form and contact your institution’s Registration Authority (RA) in person. The RA person will check your identity (id or passport or driving license) and sign the printed form.

	Once your form is signed by the RA, send a scanned copy to the DutchGrid CA via email or fax. The contact details can be found in the printed form, but you can contact also helpdesk@surfsara.nl if you are in doubt.

	The DutchGrid CA will finally send your certificate via email within ~a week. Once you have a received your certificate you will need to install it both on your UI account and your browser (UI or laptop). We’ll see this next.

Note

If you need help to obtain your DutchGrid certificate, please read the JGridstart guide [http://wiki.nikhef.nl/grid/JGridstart/Help/Request_new_certificate] or contact us at helpdesk@surfsara.nl.

Retrieve your DutchGrid certificate

Once your request is approved, you will receive an email titled “DutchGrid CA certificate …”. Now you need to retrieve the new certificate:

	Log in to your UI account with X forwarding enabled, e.g.:

$ssh -Y homer@ui.grid.sara.nl # replace "homer" with your username!

	Run the wizard again:

$java -jar jgridstart-wrapper-1.18.jar

Then a window pops up similar to the following:

[image: ../../../_images/dutchgrid_retrieve_cert.png]

	Click on retrieve your certificate. This will automatically create a file usercert.pem in your ~/.globus directory (check with $ ls ~/.globus).

	You may skip the step “install in browser” because the X session on the UI is slow and will probably be interrupted. Just click “Next”

	Close the wizard.

If everything went well, your certificate and key files (usercert.pem and userkey.pem) should be in the ~/.globus directory.

Install a DutchGrid certificate on the UI

If you followed the steps above properly, then your DutchGrid certificate and private key file should now be present in the ~/.globus directory (notice the dot!) on the User Interface machine. All you need to do is to set the proper permissions.

	Log in to your UI account:

$ssh homer@ui.grid.sara.nl # replace "homer" with your username!

	Set the proper permissions to your certificate files:

$cd $HOME/.globus
$chmod 644 usercert.pem
$chmod 400 userkey.pem

Note that the private key file should be read-only and only readable to you.

	Verify the correct permissions:

$ cd $HOME/.globus
$ ls -l
-rw-r--r-- 1 homer homer 4499 May 10 13:47 usercert.pem
-r-------- 1 homer homer 963 May 10 13:43 userkey.pem

Install a DutchGrid certificate in your browser

In order to apply for a VO membership you will have to install your certificate in your browser. Note that you can do this from any browser, however for convenience we will describe the procedure using the UI browser.

	Log in to your UI account:

$ssh -Y homer@ui.grid.sara.nl # replace "homer" with your username!
$cd $HOME/.globus

Warning

You can import a certificate in your browser only when it is in the PKCS12 format. This means that you need to convert the usercert.pem and userkey.pem files to a single .p12 file.

Convert PEM to pkcs12

	To convert a PEM file to the PKCS12 format, run on the UI:

$openssl pkcs12 -export -inkey userkey.pem -in usercert.pem -out browsercert.p12

This will ask you for a password three times: the first is to unlock your private key stored in the file userkey.pem. The PKCS12-file will be password protected, which needs a new password, and the same password for confirmation. Note that your can use the same password as the password for the private key file, but this is not necessary.

Import the certificate to the browser

	
	To import the .p12 file in your browser, open a Firefox window ($ firefox &) on the UI and apply the following steps (Note that you may have to copy the .p12 file to a directory accessible from your browser):
	
	
	From the Firefox Menu bar select:
	
	For Firefox versions older than v57.0: Edit > Preferences > Advanced > View Certificates > Import

	For Firefox versions higher than v57.0: Firefox > Preferences > Privacy & Security > scroll to the bottom "Security" section > View Certificates > Import

	Select the browsercert.p12 file from the UI local directory

	Give the password you set in the previous step.

	You should now see the certificate listed. Close the window.

Problems installing the certificate?

See also

Need more details for installing your certificate on the UI or browser? Check out our mooc video User Interface machine.

	Verify that your certificate is valid and properly installed in your browser by accessing this website:

https://voms.grid.sara.nl:8443/vomses/

If you receive an SSL authentication error, then try repeating the steps carefully as they come. If you managed to access the page above, your certificate is successfully installed!

See also:

Does my key match the certificate?

What is the expiry date of my certificate?

How can I see the subject of my certificate?

First Grid job with Dirac

Our Grid facility is powered by the DIRAC [http://diracgrid.org/] service. DIRAC provides the workload management system to submit and manage
user jobs on the Grid. We provide support for the command line tools of DIRAC and access to the DIRAC clients on our Grid UI.

This section summarises all the steps to submit your first job on the Grid, check its status and retrieve the output:

Contents

	First Grid job with Dirac

	Grid job lifecycle

	Dirac proxy creation

	Describe your job in a JDL file

	Submit the job to the Grid

	Track the job status

	Cancel job

	Retrieve the output

	Check job output

	Recap & Next Steps

Warning

You can continue with this guide only after you have completed the preparations for Grid. At this point your certificate should be installed on the UI and your VO membership should be approved and registered to the Dirac user group. Still need help with any of these steps? We can help! Contact us at helpdesk@surfsara.nl.

Once you finish with the First Grid job with Dirac, you can continue with more advanced topics and also Best practices, the section that contains guidelines for porting real complex simulations on the Grid.

Grid job lifecycle

Dirac

See also

You can find more general details about various functionalities possible with Dirac in their project documentation [https://dirac.readthedocs.io/en/latest/index.html]

To run your application on the Grid you need to describe its requirements in a specific language called job description language (JDL). This is similar to the information that we need to specify when we run jobs using a local batch scheduling system (e.g., with PBS, SLURM), although it is slightly more complex as we are now scheduling jobs across multiple sites.

Except for the application requirements, you also need to specify in the JDL the content of the input/output sandboxes. These sandboxes allow you to transfer data to or from the Grid. The input sandbox contains all the files that you want to send with your job to the worker node, like e.g. a script that you want executed. The output sandbox contains all the files that you want to have transferred back to the UI.

Note

The amount of data that you can transfer using the sandboxes is very limited, in the order of a few megabytes (less than 100MB). This means that you should normally limit the input sandbox to a few script files and the output sandbox to the stderr and stdout files.

Once you have the JDL file ready, you can submit it to multiple clusters with dirac-* commands. Dirac will schedule your job on a Grid worker node. The purpose of Dirac is to distribute and manage tasks across computing resources. More specifically, Dirac will accept your job, assign it to the most appropriate Computing Element (CE), record the job status and retrieve the output.

Dirac proxy creation

Before submitting your first Grid job, you need to create a proxy from your certificate. This has a short lifetime and prevents you from passing along your personal certificate to the Grid. The job will keep a copy of your proxy and pass it along to the Worker Node.

This section will show you how to create a valid proxy:

	Log in to your UI account:

$ssh homer@ui.grid.surfsara.nl # replace "homer" with your username

	To enable the software environment to use Dirac tools, please run the following command:

$source /etc/diracosrc

Please note that you need to run this command every time you login to the UI. You may also add this command in your configuration file ($HOME/.bashrc).

	Create a proxy with the following command and provide your Grid certificate password when prompted:

$dirac-proxy-init -b 2048 -g projectmine.com_user -M --valid 168:00

Each VO (e.g., lsgrid in the above example) is mapped to a group in Dirac (lsgrid_user in this case) and may have a different name than the VO itself. Please contact helpdesk@surfsara.nl if you are unsure of the group name to use. The above command creates a local proxy with a validity of maximum 7 days.

You should see a similar output displayed in your terminal:

 Generating proxy...
Enter Certificate password:
Added VOMS attribute /lsgrid
Uploading proxy..
Proxy generated:
subject : /DC=org/DC=terena/DC=tcs/C=NL/O=SURF B.V./CN=homer homer@example.com/...
issuer : /DC=org/DC=terena/DC=tcs/C=NL/O=SURF B.V./CN=homer homer@example.com/...
identity : /DC=org/DC=terena/DC=tcs/C=NL/O=SURF B.V./CN=homer homer@example.com
timeleft : 167:53:58
DIRAC group : lsgrid_user
path : /tmp/x509up_uxxxx
username : homer
properties : NormalUser
VOMS : True
VOMS fqan : [u'/lsgrid']

Proxies uploaded:
DN | Group | Until (GMT)
/DC=org/DC=terena/DC=tcs/C=NL/O=SURF B.V./CN=homer homer@surf.nl | | 2022/07/31 23:54

Note

What does the dirac-proxy-init command actually do?

	It generates a local proxy x509up_uXXX in the UI /tmp/ directory

	It uploads this proxy to Dirac proxy server

And now you are ready to submit jobs to the Grid! Or copy data from and to the Grid.

Describe your job in a JDL file

To submit a Grid job you must describe this in a plain text file, called JDL. The JDL file will pass the details of your job to Dirac.

Warning

Make sure you have started your session and created already a valid proxy.

	Log in to your User Interface.

	Create a file with the following content describing the job requirements. Save it as simple.jdl:

 1[
 2 Type = "Job";
 3 JobName = "my_first_job";
 4 Type = "Job";
 5 Executable = "/bin/sh";
 6 Arguments = "jobscript.sh";
 7 StdOutput = "simple.out";
 8 StdError = "simple.err";
 9 InputSandbox = {"jobscript.sh"};
10 OutputSandbox = {"simple.out","simple.err"};
11]

This job involves no large input or output files. It will copy the jobscript.sh on the Worker Node that the job will land on and execute it. The Standard output and Standard error will be directed to the files simple.out and simple.err, respectively, and retrieved when the Job Output is retrieved.

Submit the job to the Grid

To submit your first Grid job and get an understanding of the job lifecycle, we will perform these steps:

	Job submission

	Status tracking

	Output retrieval

You should have your simple.jdl file ready in your UI up to this point. When you submit this simple Grid job to the Dirac, a job will be created and sent to a remote Worker Node. There it will execute the script jobscript.sh and write its standard output and its standard error in the simple.out and simple.err respectively.

	Submit the simple job by typing in your UI terminal this command:

$dirac-wms-job-submit simple.jdl -f jobid
JobID = 314

The option -f allows you to specify a file (in this case jobid) to store the unique job identifier. Omitting the -f option means that the jobID is not saved in a file. When you do not save this id you will effectively loose the output of your job!

Track the job status

To check the current job status from the command line, apply the following command that queries Dirac for the status of the job.

	After submitting the job, type:

$dirac-wms-job-status 314

	Alternatively, if you have saved your jobIds into a file you can use the -f option and the filename as argument:

$dirac-wms-job-status -f jobid

Cancel job

	If you realise that you need to cancel a submitted job, use the following command:

$dirac-wms-job-delete 314

	Alternatively, if you have saved your jobIds into a file you can use the -f option and the filename as argument:

$dirac-wms-job-delete -f jobid

Retrieve the output

The output consists of the files included in the OutputSandbox statement. You can
retrieve the job output once it is successfully completed, in other words the
job status has changed from Running to Done. The files in the
output sandbox can be downloaded for approximately one week after the job finishes.

Note

You can choose the output directory with the -D option. If you do not use this option then the output will be copied under the UI in the current working directory with a name based on the ID of the job.

	To get the output, type:

$dirac-wms-job-get-output 314

	Alternatively, you can use the jobid file:

$dirac-wms-job-get-output -f jobid

where you should substitute jobid with the file that you used to store the
job ids. Please bear in mind the size of your home directory on the UI when downloading large output files. When dealing with large input and/or output files it is recommended to download the input data directly to the worker node, and upload the output data to a suitable storage space within the job itself. Please check out the grid_storage section for details on various clients supported on the worker nodes and best practices.

Check job output

	To check your job output, browse into the downloaded output directory. This includes the simple.out, simple.err files specified in the OutputSandbox statement:

$ls -l /home/homer/314

-rw-rw-r-- 1 homer homer 0 Jan 5 18:06 simple.err
-rw-rw-r-- 1 homer homer 20 Jan 5 18:06 simple.out

$cat /home/homer/314/simple.out

Recap & Next Steps

Congratulations! You have just executed your first job to the Grid!

Let’s summarise what we’ve seen so far.

You interact with the Grid via the UI machine ui.grid.surfsara.nl. You describe each job in a JDL (Job Description Language) file where you list which program should be executed and what are the worker node requirements. From the UI, you create first a proxy of your Grid certificate and submit your job with dirac-* commands. The resource broker Dirac accepts your jobs, assigns them to the most appropriate CE (Computing Element), records the jobs statuses and retrieves the output.

See also

Try now to port your own application to the Grid. Check out the Best practices section and run the example that suits your use case. The section Advanced topics will help your understanding for several Grid modules used in the Best practices.

Done with the General, but not sure how to proceed? We can help! Contact us at helpdesk@surfsara.nl.

Grid software

In this page we will talk about the options to run your software on the Grid worker nodes:

Contents

	Grid software

	Softdrive

	CVMFS

	Quickstart

	Access

	Logging in on the softdrive

	Distributing an example file

	Finding your files on the Grid nodes

	Python on the Grid

	Softdrive anaconda

	Docker

Softdrive

Softdrive is the service that allows you to install software in a central place and distribute it automagically on the Grid. You install the software once, and it will be available on all clusters, to all users. This means that you no longer need to supply your software in your input sandbox, or download your software in your job.

This page is about using Softdrive on the grid infrastructure. The use of Softdrive is however not limited to grid alone, as it can equally well be applied to your own clusters, your own computer or in cloud environments [http://doc.hpccloud.surfsara.nl/softdrive].

CVMFS

Softdrive is using the CVMFS service [https://cernvm.cern.ch/portal/filesystem] (short for CernVM File System) on the background. CVMFS is a network file system based on HTTP and optimised to deliver experiment software in a fast, scalable, and reliable way.

Quickstart

In this example, we will distribute a few small files to all nodes in the Dutch Grid. This should give you an idea of what is possible with Softdrive.

Softdrive works by logging in the software distribution node, and putting your files there. Next, you tell the software distribution system that you are ready installing files. These files will be made available on all nodes in the Life Science Grid and on all other nodes on the Dutch National Grid.

Access

Users of the National e-Infrastructure are entitled to use Softdrive
without the need for a separate resource request. You can request
access by sending an e-mail with your current project allocation id to
helpdesk@surfsara.nl.

Logging in on the softdrive

Once access has been arranged, you can log in on the software
distribution node, using your Grid UI
username and password:

$ssh homer@softdrive.grid.sara.nl # replace homer with your username

In your home-directory (e.g. /home/homer), you will find a README file with detailed information about the Softdrive usage.

Distributing an example file

To demonstrate distributing files to all Grid nodes, create a file and a directory within your home directory:

a test directory and a file
softdrive.grid.sara.nl:/home/homer$ mkdir -p test_dir
softdrive.grid.sara.nl:/home/homer$ echo "Hello world" > test_dir/hello.txt

To make this directory file available on all nodes on the Grid, you have to copy the test_dir under /cvmfs/softdrive.nl/$USER:

softdrive.grid.sara.nl:/home/homer$ cp -r test_dir /cvmfs/softdrive.nl/homer # replace homer with your username

	To force the update everywhere in the Grid, trigger publication by executing command:

publish-my-softdrive

Updating on all Grid nodes can take up to two hours.

Note

You need to run the command publish-my-softdrive each time you make a change in your /cvmfs/softdrive.nl/$USER directory in order to take effect on the Grid sites.

Finding your files on the Grid nodes

On Dutch Grid nodes, your Softdrive files will be available under:

/cvmfs/softdrive.nl/homer/ # replace homer with your username

Log in to your UI account and check whether your files are there:

ui.grid.sara.nl:/home/homer$ ls /cvmfs/softdrive.nl/homer/
drwxr-xr-x 17 cvmfs cvmfs 4096 Dec 16 12:11 test_dir

Note

If your software is statically compiled, then copying the executables from your home directory to /cvmfs/softdrive.nl/$USER/ should work. Just remember to export the /cvmfs/softdrive.nl/$USER software paths into your Grid scripts or UI .bashrc. In other cases with library path dependencies, we advice you to install your software directly under /cvmfs/softdrive.nl/$USER or use a prefix. An example of software installation in Softdrive can be found in section anaconda on Grid.

Python on the Grid

If you want to use a different python version to the existing on the Grid nodes or additional packages, we recommend you to install Anaconda python [https://www.continuum.io/downloads] in your UI or Softdrive account.

Next is an example of installing the Anaconda python distribution in Softdrive.

Softdrive anaconda

	Log in to Softdrive with your account:

$ssh homer@softdrive.grid.sara.nl # replace homer with your username

	Download in your home account the latest version of Anaconda [https://www.anaconda.com/download/#linux] installer for linux, e.g.:

$wget https://repo.continuum.io/archive/Anaconda2-5.1.0-Linux-x86_64.sh

	Run the installer (read and approve the license terms) in Softdrive:

$bash Anaconda2-5.1.0-Linux-x86_64.sh

Note here! The installer will ask you to which location to install the software. Do not accept the default but change it to: /cvmfs/softdrive.nl/$USER/anaconda-2-5.1.0/:

Anaconda2 will now be installed into this location:
/home/homer/anaconda2
- Press ENTER to confirm the location
- Press CTRL-C to abort the installation
- Or specify a different location below

[/home/homer/anaconda2] >>> /cvmfs/softdrive.nl/homer/anaconda-2-5.1.0/
...

That was it! You can now publish the software that is installed in your /cvmfs/softdrive.nl/homer/anaconda-2-5.1.0 directory. To do so, run this command in Softdrive:

$publish-my-softdrive

Then check after 1-2 hours from the UI if the /cvmfs/softdrive.nl/homer/anaconda-2-5.1.0 exists.

Finally, remember to include the installation path in your scripts as:

$export PATH=/cvmfs/softdrive.nl/homer/anaconda-2-5.1.0/bin:$PATH # replace homer with your username

Docker

At the moment it is not possible to run Docker containers on the Dutch National Grid or Life Science Grid. We are currently investigating different possibilities and we offer Singularity [https://userinfo.surfsara.nl/systems/shared/software/Singularity] as a container service. Please contact us at helpdesk@surfsara.nl to discuss about the available options.

Grid storage

In this page we will talk about the Grid storage facilities, the tools to interact with it and the method to handle data that is stored on tape.

Contents

	Grid storage

	About Grid storage

	dCache

	Grid file identifiers

	Transport URL or TURL

	Storage URL or SURL

	Default ports

	Storage clients

	Staging files

	gfal2 python API

	Preparation

	State operations

	Stage operations

	Unpinning operations

	Monitor staging activity

	Unpin a file

	Checksums

	Transport security

	SRM interaction example diagram

	Importing large amounts of data

About Grid storage

Each cluster on the Grid is equipped with a Storage Element or SE where data is stored. The Grid storage is useful for applications that handle large amount of data that can not be sent with the job Sandbox or stored in a pilot job database.

You can interact with the Grid storage from the UI or from a Worker Node, within your running job. The scripts that can access the Grid storage can be submitted from:

	The UI

	The Dutch Grid

To use the Grid storage you must:

	Have a personal Grid certificate [1]

	Be member of a VO for which we have allocated storage space.

You can access the Grid storage with Grid Storage clients, through interfaces that speak protocols like SRM, GridFTP, GSIdCap or Webdav. With these storage clients you can:

	list directories and files

	read (download) files

	write (upload) files

	delete files or directories

	stage files (copy them from tape to disk for faster reading)

[1]
It is possible to access the dCache Grid storage without certificate, by using webdav clients with username/password authentication. However, authentication with username/password is less secure, and Webdav is not as fast as GridFTP.

dCache

The storage element located at SURFsara is accessible from any Grid cluster or UI. It uses the dCache system [https://www.dcache.org/] for storing and retrieving huge amounts of data, distributed among a large number of server nodes. It consists of magnetic tape storage and hard disk storage and both are addressed by a common file system. See dCache specifications for details about our dCache instance.

Grid file identifiers

You can refer to your files on the Grid with different ways depending on which of the available Storage clients you use to manage your files:

Transport URL or TURL

Examples:

lsgrid user homer stores the file zap.tar on dCache storage
gsiftp://gridftp.grid.surfsara.nl:2811/pnfs/grid.sara.nl/data/lsgrid/homer/zap.tar

same, but with a Webdav TURL
https://webdav.grid.surfsara.nl/pnfs/grid.sara.nl/data/lsgrid/homer/zap.tar

Clients for TURLs

	uberftp

	globus

	gfal

	fts

	globusonline

Storage URL or SURL

Example:

lsgrid user homer stores the file zap.tar on dCache storage
srm://srm.grid.sara.nl:8443/pnfs/grid.sara.nl/data/lsgrid/homer/zap.tar

Clients for SURLs

	srm

	gfal

	fts

Default ports

	Protocol

	Host(s) and port(s)

	Remark

	SRM

	srm://srm.grid.sara.nl:8443

	

	GridFTP

	gsiftp://gridftp.grid.surfsara.nl:2811

	Data channel port range: 20000-25000

	Webdav

	https://webdav.grid.surfsara.nl:443

	See webdav clients for details

	https://webdav.grid.surfsara.nl:2880

	https://webdav.grid.surfsara.nl:2881

	https://webdav.grid.surfsara.nl:2882

	https://webdav.grid.surfsara.nl:2883

	https://webdav.grid.surfsara.nl:2884

	https://webdav-cert.grid.sara.nl:443

	GSIdCap

	gsidcap://gsidcap.grid.sara.nl:22128

	

	xroot

	xrootd.grid.sara.nl:1094

	Used by CERN only

	all

	ipv4.grid.sara.nl

	For clients that don’t speak IPv6

The last one, ipv4.grid.sara.nl, is a single VM that supports only IPv4 and no IPv6. It can be used for small scale access through GridFTP, Webdav, Xroot or GSIdCap where IPv6 causes problems. Don’t use it for batch processing.

Storage clients

The InputSandbox and OutputSandbox attributes in the JDL file are the basic way to move files to and from the User Interface (UI) and the Worker Node (WN). However, when you have large files (from about 100 MB and larger) then you should not use these sandboxes to move data around. Instead you should use the dCache and work with several Storage clients.

In this section we will show the common commands to use the various storage clients.

Note

From the many Grid storage clients, we recommend you to use the : globus client or gfal client. These tools have a clean interface, and their speed is much better on our systems compared with their srm-* equivalents.

Storage clients

	
	protocols

	

	Client

	SRM

	GridFTP [2]

	GSIdCap

	Webdav

	3rd party

	Tape control [3]

	globus client

	–

	yes

	–

	–

	–

	–

	srm client

	yes

	[4]

	[4]

	[4]

	yes

	yes

	gfal client

	yes

	yes

	–

	–

	yes

	yes

	webdav clients

	–

	–

	–

	yes

	–

	–

	fts client

	yes

	yes

	–

	yes

	yes

	yes

	globusonline client

	–

	yes

	–

	–

	yes

	–

	uberftp client [5]
(not recommended)

	–

	yes

	–

	–

	–

	–

[2]
The GridFTP protocol offers the best network performance.

[3]
Examples of tape control: staging a file from tape to disk, or get its locality (tape or disk).

[4]
(1,2,3)
SRM and LCG commands use the SRM protocol for metadata level operations and switch to another protocol like GridFTP for file transfers. This may cause protocol overhead. For example, authentication needs to be done twice: once for each protocol. For small files, that may be inefficient.

[5]
UberFTP currently has a dangerous bug that may destroy data. See https://ggus.eu/?mode=ticket_info&ticket_id=129103 for details.

Staging files

The dCache storage at SURFsara consists of magnetic tape storage and hard disk storage.
If your quota allocation includes tape storage, then the data stored on magnetic tape
has to be copied to a hard drive before it can be used. This action is called Staging files or ‘bringing a file online’.

Note

Staging is important. If your job reads a file that is on tape but not online, your job will wait until dCache brings the file online (or reaches a timeout). This may take minutes when it’s quiet, but it may take days when multiple users are staging large datasets. That would be a waste of CPU cycles. But that’s not all: the number of concurrent transfers is limited per pool, so it would also be a waste of transfers slots.

Staging terms

	Locality

	Meaning

	ONLINE

	The file is only on disk

	NEARLINE

	The file is only on tape; it should be staged before reading it

	ONLINE_AND_NEARLINE

	The file is both on disk and on tape

There are some more file statuses. See the SRMv2 specifications [https://sdm.lbl.gov/srm-wg/doc/SRM.v2.2.html#_Toc241633052] for a full list.

The Grid storage files remain online as long as there is free space on the disk pools. When a pool group is full
(maximum of assigned quota on staging area) and free space is needed, dCache will purge the least recently used
cached files. The tape replica will remain on tape.

The amount of time that a file is requested to stay on disk is called pin lifetime. The file will not be purged until
the pin lifetime has expired.

There are different ways to stage your files on dCache. For running the staging commands, it is required to authenticate
to dCache either with a valid proxy certificate or username/password or a macaroon depending on the client.
We support the following clients:

	gfal2 [https://dmc-docs.web.cern.ch/dmc-docs/gfal2-python.html] supported by CERN. It allows proxy authentication only.

	ada [https://github.com/sara-nl/SpiderScripts/tree/master/ada] supported by SURF. It allows proxy or username/password or macaroon authentication.

	srmbringonline. It supports proxy authentication only.

The preferred method for bulk staging is the gfal2 practice below.

gfal2 python API

The gfal2 API provides a set of functions to support staging operations. Given a SURL or TURL list of files, the following gfal2 scripts can be used:

	state.py [https://raw.githubusercontent.com/sara-nl/griddocs/master/source/Scripts/staging/state.py]: display the locality (state) of the files

	stage.py [https://raw.githubusercontent.com/sara-nl/griddocs/master/source/Scripts/staging/stage.py]: stage (bring online) the files and return a token

	release.py [https://raw.githubusercontent.com/sara-nl/griddocs/master/source/Scripts/staging/release.py]: release the files based on the token

The following section gives an example of usage of the gfal2 scripts.

Preparation

	Download the scripts on the UI and inspect the usage instructions inside each of state.py, stage.py, release.py.

	Create a file that includes a list with SURLS (srm://srm.grid.sara.nl/..) of the files you want to stage from tape, e.g. the file called mysurls inside the folder datasets:

 $cat datasets/mysurls
#srm://srm.grid.sara.nl/pnfs/grid.sara.nl/data/lsgrid/homer/file1
#srm://srm.grid.sara.nl/pnfs/grid.sara.nl/data/lsgrid/homer/file2
#srm://srm.grid.sara.nl/pnfs/grid.sara.nl/data/lsgrid/homer/file3

	In case that you plan to stage a big bulk of data, split the filelist in chunks of 1000 files:

$split -l 1000 --numeric-suffixes [datasets/mysurls] [output_prefix]

State operations

	Check the state of the files with:

 $python state.py --file [datasets/mysurls]
#srm://srm.grid.sara.nl/pnfs/grid.sara.nl/data/lsgrid/homer/file1 ONLINE_AND_NEARLINE
#srm://srm.grid.sara.nl/pnfs/grid.sara.nl/data/lsgrid/homer/file2 NEARLINE
#srm://srm.grid.sara.nl/pnfs/grid.sara.nl/data/lsgrid/homer/file3 NEARLINE

If your surls filelist is too long it is better to redirect the output of this command in a file.

	Display the total number of files on tape and/or disk:

$python state.py --file [datasets/mysurls] | awk '{print $2}' | sort | uniq --count
#1 ONLINE_AND_NEARLINE
#2 NEARLINE

	If your surls filelist is too long, please use the token returned by the stage.py (see section below) to retrieve the state of your files. It improves performance significantly! Given a token id [5d43ee2e:-1992583391] the equivalent commands would be:

 $python state.py --file [datasets/mysurls] --token [5d43ee2e:-1992583391]
$python state.py --file [datasets/mysurls] --token [5d43ee2e:-1992583391] | awk '{print $2}' | sort | uniq --count

Stage operations

	Submit a staging request for your surls filelist. The command returns a token that you can use to check the state of the files:

$python stage.py --file [datasets/mysurls]
#Got token 5d43ee2e:-1992583391

You can store the output in a file stage.log to make sure that you keep safe the token IDs of your stage requests.
This is required to state/release the files later on.

Note

The token always corresponds to the given surls file list. You need to use the exact same surls file in your state/release commands. If you add/remove any file in your surls filelist and use the old token, you will get an error.

Note

In case that you plan to stage a big bulk of data, then submit each chunk of 1000 files with 1 minute interval time to prevent overloading the staging namespace server.

	The pin lifetime is set in seconds, the default pin time in the script is set to two weeks (or 1209600 sec). You can request the desired pin time with the argument [–pintime pintime]:

$python stage.py --file [datasets/mysurls] --pintime [pintime in seconds]
#Got token 5d43ee2e:-1992583393

The pin lifetime counts from the moment you submit the request independent to the actual time that the files are on disk.

Unpinning operations

	Release the pin of your bulk of files with:

$python release.py --file [datasets/mysurls] --token [5d43ee2e:-1992583391]

After submitting the unpinning command above, the files will remain cached but purgeable until new requests will claim the available space.

If your surls filelist is too long it is better to redirect the output of this command in a file.

Monitor staging activity

Once you submit your stage requests, you can use the gfal scripts to monitor the status or check the webpage below that lists all the current staging requests:

http://dcmain.grid.sara.nl:2288/poolInfo/restoreHandler/lazy

Unpin a file

The disk pool where your files are staged has limited capacity and is only meant for data that a user wants to process.
When you stage a file you set a pin lifetime. The pin lifetime here is set to 1 week, but note that this counts from
the moment you submit the request independent to the actual time that the files are on disk. The file will not be purged
until the pin lifetime has expired. Then the data may be purged from disk, as soon as the space is required for new stage
requests. When the disk copy has been purged, it has to be staged again in order to be processed on a Worker Node.

When a pool group is full with pinned files, staging is paused. Stage requests will just wait until pin lifetimes for
other files expire. dCache will then use the released space to stage more files until the pool group is full again.
When this takes too long, stage requests will time out. So pinning should be used moderately.

When you are done with your processing, we recommend you release (or unpin) all the files that you don’t need any more.
It is an optional action, but helps a lot with the effective system usage.

	Release the pin of your bulk of files with:

$python release.py --file [datasets/mysurls] --token [5d43ee2e:-1992583391]

This command will initiate unpinning of files in mysulrs list. If your surls filelist is too long it is better to redirect the output of this command in a file.

Warning

At the moment neither the srm-bring-online nor the python gfal release.py scripts can effectively release a file if there are multiple pin requests. Please use srm-release-files if you want to release all the pins set to a file.

Checksums

dCache checks the checksum of a file on many operations (for instance, during tape store & restore operations). If dCache finds, that the checksum of a file does not match the checksum it has in its database, dCache will refuse to continue and will present an error message instead.

dCache is configured to use Adler32 checksums by default, for performance reasons. It is however possible to transfer files to dCache while verifying MD5 checksums. Globus Online works only with MD5 checksums, and previous versions of dCache did not support MD5 checksums, so one would have to disable checksum checking in Globus. Now, dCache does support MD5 checksums during transfers, even when the default checksum type is Adler32. So now Globus Online and dCache should be able to work together with checksums enabled. If a GridFTP client uploads data with MD5 verification enabled, dCache will calculate the MD5 checksum, return this to the client and store it in its database.

dCache does not enable a user to add MD5 checksums of existing data.

We may however, if your project needs it, change the default checksum from Adler32 to MD5 for your poolgroups. From the moment we do that, for new files, dCache will store MD5 checksums in its database, and this MD5 checksum will be used to verify file integrity during operations. For existing data, we can tell dCache to calculate the new checksums. Tape data will have to be staged to do this. MD5 checksums require more CPU than Adler32, so there will be a performance impact for writing, staging and reading data.

Checksums can be listed with srmls -l:

$srmls -l srm://srm.grid.sara.nl/pnfs/grid.sara.nl/data/lsgrid/test | grep locality

Also through webdav clients and gfal client you can retrieve a file’s checksum. The checksum value comes from the database so it performs well.

Transport security

With most protocols, the authentication is done over a secured channel (usually encrypted with TLS). After authentication, the data is transferred in plain text. Since most users are from High Energy Physics, this is usually no problem.

Life scientists however may need to store private data such as MRI scans or DNA scans. The European GDPR law requires careful handling of such personal data. We therefore suggest that you keep such data safe during transport. Below we give an overview which protocols in dCache encrypt data during transfer.

Data channel encryption:

	WebDAV over port 2880, 2881, 2883 and 2884 (we configured 2881 and 2884 to have the most secure encryption)

	WebDAV over port 443 only through https://webdav-cert.grid.sara.nl

NO data channel encryption:

	WebDAV over port 443

	WebDAV over port 2882

	SRM

	GridFTP (dCache does not support GridFTP data encryption. Please be warned that globus-url-copy -dcpriv does not warn you about this and transfers your data in plain text.)

	GSIdCap, dCap

	Xroot

Since WebDAV is currently the only way to encrypt data in transit, we continuously try to improve the security of our WebDAV doors. We regularly test our WebDAV doors with tools like the Qualys SSLtest [https://www.ssllabs.com/ssltest/], nmap [https://nmap.org/], Greenbone/OpenVAS [http://www.openvas.org/], and others, and follow their recommendations.

The conclusion: if your data is personal, safely upload it to and download it from dCache, by using WebDAV over ports 2881 or 2884. See webdav clients for more information.

SRM interaction example diagram

Here is a sequence diagram that illustrates how the SRM commands interact with the Grid storage.

[image: ../../_images/Using_SRM.png]
As you can see from this diagram, there can be a lot of overhead per file. For this reason, Grid storage performs best with large files. We recommend to store files of several megabytes to gigabytes. Some users have files of more than 2 terabytes, but that may be impractical on other systems with limited space like worker nodes.

Importing large amounts of data

The Data Ingest Service [https://www.surf.nl/en/services-and-products/data-ingest-service/index.html] is a SURFsara service for researchers who want to store or analyse large amounts of data at SURFsara. The service is convenient for users who lack sufficient bandwidth or who have stored their data on a number of external hard disks.

uberftp client

This page includes the basic commands to use uberftp. For an overview of storage clients, see Storage clients.

Contents

	uberftp client

	Uberftp

	Creating/listing

	Transferring data

	Parallel streams

	Removing data

Uberftp

Warning

We have observed that uberftp deletes a file after it has unsuccessfully tried to overwrite it. If you write data with uberftp, please make sure you never try to overwrite existing files! :globus-url-copy does not have this bug.

Creating/listing

Note

To run the examples below you need to have a valid proxy, see StartGridSession.

	Listing directories on dCache:

$uberftp -ls gsiftp://gridftp.grid.sara.nl:2811/pnfs/grid.sara.nl/data/lsgrid/

	Create a new directory on dCache:

$uberftp -mkdir gsiftp://gridftp.grid.sara.nl:2811/pnfs/grid.sara.nl/data/lsgrid/homer/newdir

Transferring data

	Copy file from dCache to local machine:

$uberftp gsiftp://gridftp.grid.sara.nl:2811/pnfs/grid.sara.nl/data/lsgrid/homer/zap.tar file:///home/homer/zap.tar

	Copy file from local machine to dCache:

$uberftp file:///home/homer/zap.tar gsiftp://gridftp.grid.sara.nl:2811/pnfs/grid.sara.nl/data/lsgrid/homer/zap.tar

Note

The asterisk “*” wildcard (match all characters) works with uberftp. Please use this option with caution, especially when deleting files.

Parallel streams

The GridFTP protocol allows for parallel streaming of data transfers. This makes a transfer more efficient and less susceptible to network errors, especially over long distances. If you have a lot of simultaneous transfers running anyway, increasing the number of streams per transfer will not make a big difference, because the network bandwidth may limit the results.

$uberftp -parallel 4 \
$ gsiftp://gridftp.grid.sara.nl:2811/pnfs/grid.sara.nl/data/lsgrid/homer/zap.tar \
$ file:zap.tar

Results may vary based on circumstances. We suggest a number of 4 streams as a start.

Removing data

	Remove a file from dCache:

$uberftp -rm gsiftp://gridftp.grid.sara.nl:2811/pnfs/grid.sara.nl/data/lsgrid/homer/zap.tar

	Remove whole (non-empty) directory with all content from dCache:

$uberftp -rm -r gsiftp://gridftp.grid.sara.nl:2811/pnfs/grid.sara.nl/data/lsgrid/homer/testdir/

globus client

This page includes the basic commands to use globus. For an overview of storage clients, see Storage clients.

Contents

	globus client

	Globus tools

	Creating/listing

	Transferring data

	Parallel streams

	Removing data

	Fifo pipes

	Extract directory from dCache

	Extract a file

	Transfer directory to dCache

Globus tools

Note

To run the examples below you need to have a valid proxy, see StartGridSession.

Creating/listing

	Listing directories on dCache:

$globus-url-copy -list gsiftp://gridftp.grid.sara.nl:2811/pnfs/grid.sara.nl/data/lsgrid/homer/

The globus-* client does not offer an option to create directories. For this purpose use a different client, e.g. uberftp client.

Transferring data

Note

The options -dbg -gt 2 -vb would show you extra logging information for your transfer.

	Copy file from dCache to local machine:

$globus-url-copy \
$ gsiftp://gridftp.grid.sara.nl:2811/pnfs/grid.sara.nl/data/lsgrid/homer/zap.tar \
$ file:///`pwd`/zap.tar

Note

globus-url-copy does NOT encrypt the data channel when transferring data to and from dCache. Even when you supply the commandline flags -dcpriv or -data-channel-private to enforce encryption the data transfers are still not encrypted. If you need to transfer sensitive data, please contact our helpdesk. Then we can help you with a more secure alternative. This flaw has been reported to the appropriate organisations.

	Copy file from local machine to dCache:

$globus-url-copy \
$ file:///`pwd`/zap.tar \
$ gsiftp://gridftp.grid.sara.nl:2811/pnfs/grid.sara.nl/data/lsgrid/homer/zap.tar

	Recursive upload to dCache:

$globus-url-copy -cd -r \
$ /home/homer/testdir/ \
$ gsiftp://gridftp.grid.sara.nl:2811/pnfs/grid.sara.nl/data/lsgrid/homer/testdir/
replace testdir with your directory

	Recursive download from dCache:

First create the directory locally, e.g. testdir.

$globus-url-copy -cd -r \
$ gsiftp:///gridftp.grid.sara.nl:2811/pnfs/grid.sara.nl/data/lsgrid/homer/testdir/ \
$ /home/homer/testdir/

	Third party transfer (between dCache sites):

First create the remote directory, e.g. targetdir.

$globus-url-copy -cd -r \
$ gsiftp://gridftp.grid.sara.nl:2811/pnfs/grid.sara.nl/data/lsgrid/homer/sourcetdir/ \
$ gsiftp://gridftp.grid.sara.nl:2811/pnfs/grid.sara.nl/data/lsgrid/penelope/targetdir/
note: you must include the trailing slash!

See also

For dCache 3rd party transfers see also fts client.

Parallel streams

The globus-url-copy uses by default 10 parallel streams for transfers.

Removing data

The globus-* client does not offer an option to delete files or directories. For this purpose, use a different client, e.g. uberftp client.

Fifo pipes

When you want to process data from a large tar file (hundreds of Gigabytes) that is stored on the Grid Storage, it is possible to extract just the content without copying the complete tar file on the Worker Node. Similarly, you can upload a directory that will be stored in a tar file on the Grid storage on-the-fly. This trick saves space on the local node from keeping the double copy of the data and is possible by using the fifo pipes technique.

Extract directory from dCache

Extract the content of a tar file from the Grid storage on the worker node or UI:

Create fifo for input data
$INPUT_FIFO="GRID_input_fifo.tar"
$mkfifo $INPUT_FIFO
Extract the directory from fifo and catch PID
$tar -Bxf ${INPUT_FIFO} & TAR_PID=$!
Download the content of the tar file, replace zap.tar with your tar file
$globus-url-copy -vb \
$ gsiftp://gridftp.grid.sara.nl:2811/pnfs/grid.sara.nl/data/lsgrid/homer/zap.tar \
$ file:///`pwd`/${INPUT_FIFO} && wait $TAR_PID

Extract a file

Extract a particular from a known directory location in a tar file:

Create fifo for input file
$INPUT_FIFO="GRID_input_fifo.tar"
$mkfifo $INPUT_FIFO
Extract a particular file from fifo and catch PID
$tar -Bxf ${INPUT_FIFO} zap/filename & TAR_PID=$! # replace zap/filename with the exact location of you file in the tar
Download the file, replace zap.tar with your tar file
$globus-url-copy -vb \
$ gsiftp://gridftp.grid.sara.nl:2811/pnfs/grid.sara.nl/data/lsgrid/homer/zap.tar \
$ file:///`pwd`/${INPUT_FIFO} && wait $TAR_PID

Transfer directory to dCache

$OUTPUT_FIFO="GRID_output_fifo.tar"
$mkfifo ${OUTPUT_FIFO} # create a fifo pipe
Push output directory to file (fifo) and catch PID
$tar -Bcf ${OUTPUT_FIFO} zap/ & TAR_PID=$! # replace zap/ with the directory to be uploaded
Upload the final dir with fifo
$globus-url-copy -vb file:///${PWD}/${OUTPUT_FIFO} \
$ gsiftp://gridftp.grid.sara.nl:2811/pnfs/grid.sara.nl/data/lsgrid/homer/zap.tar && wait ${TAR_PID}
note:add stall-timeout flag in sec (e.g. -stall-timeout 7200) for large files that take too long to complete checksum on the server after transfer

srm client

This page explains the use of the srm client. For an overview of storage clients, see Storage clients.

Contents

	srm client

	SRM

	Creating/listing

	Transferring data

	Recursive transfer

	Parallel streams

	Removing data

	Recursive delete

	Staging

	Staging a single file

	Staging a list of files

SRM basics

See also

Have a look at our mooc video Storage Resource Manager for additional examples.

SRM

The Storage Resource Manager (short SRM) has been designed to be a single interface for the management of both disk and tape storage resources. It provides options for copying files to/from the Grid storage, Staging files from tape, creating or removing files and so on. It uses SURLs as the physical filename to reference a file.

The srm client is one of the most popular Storage clients. However, srm- commands are using Java which has the tendency to allocate big amounts of memory and sometimes be slow, also because of the SRM protocol overhead. If transfer speed is important, use uberftp client, globus client or gfal client instead.

Note

To run the examples below you need to have a valid proxy, see StartGridSession.

Creating/listing

	Listing directories on dCache:

$srmls srm://srm.grid.sara.nl:8443/pnfs/grid.sara.nl/data/lsgrid/

	Create a new directory on dCache:

$srmmkdir srm://srm.grid.sara.nl:8443/pnfs/grid.sara.nl/data/lsgrid/homer/newdir/

Transferring data

Note

The -debug option would show you extra logging information for your transfers.

	Copy file from dCache to local machine:

note the flag -server_mode=passive!
$srmcp -server_mode=passive \
$srm://srm.grid.sara.nl:8443/pnfs/grid.sara.nl/data/lsgrid/homer/zap.tar \
$file:///`pwd`/zap.tar

	Copy file from local machine to dCache:

$srmcp -debug file:///`pwd`/zap.tar \
$srm://srm.grid.sara.nl:8443/pnfs/grid.sara.nl/data/lsgrid/homer/zap.tar

Recursive transfer

Recursive transfer of files is not supported with the srm-* client commands.

Parallel streams

Information not available yet.

Removing data

	Remove a file from dCache:

$srmrm srm://srm.grid.sara.nl:8443/pnfs/grid.sara.nl/data/lsgrid/homer/zap.tar

Recursive delete

Recursive deletion of files is not supported with the srm-* client commands. It is possible to remove a directory as long as it is empty, i.e. content files have been removed.

Staging

Staging a single file

	Check the locality status of a file:

$srmls -l srm://srm.grid.sara.nl:8443/pnfs/grid.sara.nl/data/lsgrid/homer/zap.tar | grep locality
#locality:ONLINE_AND_NEARLINE

	Submit a staging request for a single file. After submitting the staging command below, the prompt is waiting for the file to get online. Once the file gets online, a unique request id is returned. The pin lifetime is set in seconds, in this examples the requested pin time is a day (or 86400 sec):

$srm-bring-online -request_lifetime=86400 srm://srm.grid.sara.nl:8443/pnfs/grid.sara.nl/data/lsgrid/homer/zap.tar
#srm://srm.grid.sara.nl:8443/pnfs/grid.sara.nl/data/lsgrid/homer/zap.tar brought online, use request id 897617461 to release

	Unpin a file:

After submitting the unpinning command below, the file will remain cached but purgeable until new requests will claim the available space:

$srm-release-files srm://srm.grid.sara.nl:8443/pnfs/grid.sara.nl/data/lsgrid/homer/zap.tar -request_tokens=[tokenID] #replace tokenID with 897617461 retrieved above

	Release all pins of a file:

$srm-release-files srm://srm.grid.sara.nl:8443/pnfs/grid.sara.nl/data/lsgrid/homer/zap.tar

Staging a list of files

Here is an example to stage a list of files. Let’s say that you want to stage all the .tgz files in a certain
dCache directory like /pnfs/grid.sara.nl/data/lsgrid/homer/. We will use the command srm-bring-online.
However, when you run this command the prompt will hang until the file is actually staged.
So you can start first a screen shell to make sure your copying process continues when you accidentally
loose connection to the server.

	Start screen on the UI:

$screen

	Create the file list and note that you need to use a SURL for your filepaths:

$FILES=`srmls srm://srm.grid.sara.nl/pnfs/grid.sara.nl/data/lsgrid/homer/ | egrep 'tgz' | awk '{print "srm://srm.grid.sara.nl:8443"$2}'`

	Check if the list looks OK. All filenames should be split with spaces in one line:

$echo $FILES
#srm://srm.grid.sara.nl:8443/pnfs/grid.sara.nl/data/lsgrid/homer/file1.tgz srm://srm.grid.sara.nl:8443/pnfs/grid.sara.nl/data/lsgrid/homer/file2.tgz srm://srm.grid.sara.nl:8443/pnfs/grid.sara.nl/data/lsgrid/homer/file3.tgz srm://srm.grid.sara.nl:8443/pnfs/grid.sara.nl/data/lsgrid/homer/file4.tgz

	Check the status of the files to see how many are online (Disk) and how many are nearline (Tape):

$srmls -l $FILES | grep locality | awk '/ONLINE/{i++};/:NEARLINE/{j++}; END{print "Disk:", i, ", Tape:", j}'
#Disk: , Tape: 4

	Submit the stage command to request staging the bulk of files. You can store the output in a file stage.log to save the request IDs. The pin lifetime here is set to 1 week, but note that this counts from the moment you submit the request independent to the actual time that the files are on disk:

$srm-bring-online $FILES -request_lifetime=604800 > stage.log
prompt will hang until operation is complete for all the files

	Once processing of the requested files is done, you can release the bulk of files so that the pin is removed and the staging read-pool is free for other data:

$srm-release-files $FILES

gfal client

This page includes the basic commands to use gfal. For an overview of storage clients, see Storage clients.

Contents

	gfal client

	gFAL

	Creating/listing

	Transferring data

	Recursive transfer

	FIFO transfers

	Removing data

	Checksums

	Locality

gFAL

Note

To run the examples below you need to have a valid proxy, see StartGridSession.

Mandatory environment settings:

$export LCG_GFAL_INFOSYS=bdii.grid.sara.nl:2170

Note

The examples below will work both with TURLs and SURLs.

Creating/listing

	Listing directories on dCache:

$gfal-ls -l gsiftp://gridftp.grid.sara.nl:2811/pnfs/grid.sara.nl/data/lsgrid/

	Create a new directory on dCache:

$gfal-mkdir gsiftp://gridftp.grid.sara.nl:2811/pnfs/grid.sara.nl/data/lsgrid/homer/newdir/

Transferring data

	Copy file from dCache to local machine:

$gfal-copy gsiftp://gridftp.grid.sara.nl:2811/pnfs/grid.sara.nl/data/lsgrid/homer/zap.tar file:///`pwd`/zap.tar

	Copy file from local machine to dCache:

$gfal-copy file:///`pwd`/zap.tar gsiftp://gridftp.grid.sara.nl:2811/pnfs/grid.sara.nl/data/lsgrid/homer/zap.tar

Recursive transfer

Recursive transfer of files is not supported with the gfal-copy command.

FIFO transfers

Using a fifo pipe allows you to tar/untar a file on the fly and use half of the space on the WN, e.g. tarring a directory and
uploading the tarball to dCache would require 2x(directory size) space on the WN without a fifo.

	Download a tar ball from dCache using fifo

INPUT_FIFO="GRID_input_fifo.tar"
mkfifo ${INPUT_FIFO}
tar -Bxf ${INPUT_FIFO} & TAR_PID=$!
gfal-copy gsiftp://gridftp.grid.sara.nl:2811/pnfs/grid.sara.nl/data/lsgrid/homer/zap.tar file:///${PWD}/${INPUT_FIFO} && wait ${TAR_PID}

	Upload a tar ball to dCache using fifo

OUTPUT_FIFO="GRID_output_fifo.tar"
tar -Bcf ${OUTPUT_FIFO} ${PWD}/mydir/ & TAR_PID=$!
gfal-copy file:///${PWD}/${OUTPUT_FIFO} gsiftp://gridftp.grid.sara.nl:2811/pnfs/grid.sara.nl/data/lsgrid/homer/zap.tar && wait ${TAR_PID}

Removing data

	Remove a file from dCache:

$gfal-rm gsiftp://gridftp.grid.sara.nl:2811/pnfs/grid.sara.nl/data/lsgrid/homer/zap.tar

	Remove whole (non-empty) directory with all content from dCache:

$gfal-rm -r gsiftp://gridftp.grid.sara.nl:2811/pnfs/grid.sara.nl/data/lsgrid/homer/testdir/

Checksums

	Get checksum for a file on dCache:

$gfal-sum gsiftp://gridftp.grid.sara.nl:2811/pnfs/grid.sara.nl/data/lsgrid/homer/zap.tar ADLER32

Locality

	Get locality (ONLINE, NEARLINE) for a file on dCache:

$gfal-xattr gsiftp://gridftp.grid.sara.nl:2811/pnfs/grid.sara.nl/data/lsgrid/homer/zap.tar user.status

webdav clients

This page describes how to use the webdav protocol. For an overview of storage clients, see Storage clients.

Contents

	webdav clients

	About WebDAV

	Available WebDAV doors

	Choosing a WebDAV door

	Authentication

	Transport security

	Performance

	Firewall issues

	IPv4 / IPv6

	Clients

	Web browsers

	Curl & wget

	Creating directories

	Transferring data

	Uploading

	Downloading

	Downloading with proxy authentication

	Partial downloads

	Renaming

	With proxy authentication

	With username/password authentication

	Removing data

	Querying file properties

	Locality

	Adler32 checksums

	MD5 checksums

	Rclone

	Sharing data with Macaroons

	Graphical access with Cyberduck

	Cyberduck with a user certificate

	Mounting WebDAV with Mountain duck

About WebDAV

The WebDAV protocol has the following advantages:

	It supports not only x509 (user certificate or proxy) authentication, but also username & password authentication and macaroon authentication

	It uses the common port 443. Some overly strict firewalls may block outgoing traffic, but port 443 is so common that it is seldom blocked. However, using WebDAV to bypass firewalls should be seen as a temporary solution; it would be better to open up your institute’s firewall to allow access to the dCache subnet.

	It can transfer data over a secure channel; other protocols like GridFTP do authentication over a secure channel but transfer data unencrypted.

It also has disadvantages:

	It is not a high performance transfer protocol. If this is important, use GridFTP instead.

	Support by WebDAV clients varies widely. Some operations (like renaming a file) may not work in certain clients and circumstances. Modifying/overwriting a file, although the WebDAV protocol supports it, doesn’t work on dCache; you’ll need to delete the old file and upload the new file instead.

Available WebDAV doors

dCache has the following WebDAV doors:

	URL including port

	Authentication method

	Remarks

	https://webdav.grid.surfsara.nl:443

	User/password, macaroon

	Redirects on read

	https://webdav.grid.surfsara.nl:2880

	User/password, macaroon, X509

	No redirects

	https://webdav.grid.surfsara.nl:2881

	User/password, macaroon

	No redirects; maximum transport security

	https://webdav.grid.surfsara.nl:2882

	X509, macaroon

	Redirects on read and write

	https://webdav.grid.surfsara.nl:2883

	X509, macaroon

	No redirects

	https://webdav.grid.surfsara.nl:2884

	X509, macaroon

	No redirects; maximum transport security

	https://webdav-cert.grid.sara.nl:443

	X509, macaroon

	No redirects; maximum transport security

	https://ipv4.grid.surfsara.nl:*

	Same as webdav.grid.surfsara.nl, but IPv4 only

Choosing a WebDAV door

Authentication

The most important consideration is whether you want to authenticate with username/password or with x509 (certificate/proxy). See the above table. All WebDAV doors support macaroons (bearer tokens).

Transport security

Another important consideration is whether a WebDAV door should redirect or not; this affects transport security and throughput.

Advantages of redirects:

	It’s a form of load balancing, which improves the speed.

	Redirecting WebDAV doors do the authentication over HTTPS, but they redirect your client to an HTTP port. So the data transfer is unencrypted. This too improves speed.

Disadvantages of redirects:

	File transfers are sent over HTTP, so they are not encryted. A “man in the middle” might be able to read the data, or even modify it in transit. If privacy is a concern, choose a door that does not redirect.

	Some WebDAV clients don’t handle redirects very well.

If transport security is a requirement, we suggest to use the WebDAV doors on port 2881 or 2884 for the best transport security. They use only TLSv1.2 or better, and they are configured with encryption ciphers that offer Perfect Forward Secrecy. They have some extra HTTP security headers that may make abuse more difficult.

There might be some clients that have difficulties connecting to these high security doors. If data security is important to you, we suggest you find clients that do support these improved security settings. In the future, these settings will be applied to ports 2880 and 2883 as well.

Performance

Another consideration is whether you’re using the door for parallel access.

webdav.grid.surfsara.nl is a DNS round robin that will direct you to a (more or less) random host in a pool of WebDAV servers. So it is very well suited for parallel access. The other host names are not powered by a group of nodes, so they are less suited to parallel processing.

Firewall issues

Use webdav-cert.grid.sara.nl when you want to authenticate with a user certificate or proxy, and your institute’s firewall blocks outgoing connections to port 2882 to 2884. It’s a single virtual machine; don’t use it for parallel processing. It is configured with the best security settings, like the ones on port 2881 and 2884.

IPv4 / IPv6

All WebDAV doors are dual stack: they support both IPv4 and IPv6, with IPv6 as the preferred protocol. Use ipv4.grid.surfsara.nl for storage clients that have problems with IPv6. It’s a single virtual machine; don’t use it for parallel processing.

Clients

We’ve tested these WebDAV clients successfully with dCache:

	web browsers (read only)

	curl

	wget (read only)

	rclone (username/password; no x509 authentication)

	cyberduck (GUI)

We’ll describe how to use them below.

Web browsers

The easiest way to access dCache is with a normal web browser. You can point a browser like Firefox to https://webdav.grid.surfsara.nl/pnfs/grid.sara.nl/data/ or any of the other WebDAV doors listed in the table above. When the browser asks for a username and password, you can provide your Grid UI (or CUA) username and password. An icon in front of each file indicates the locality of the file (tape or disk). When you click on a listed file, it will be downloaded, if you’re authorized to do so.

You can’t upload to dCache WebDAV with a normal browser. There is a new interface, dCache View [https://dcacheview.grid.surfsara.nl], that allows you to upload files from your browser. This is still in development, so test it first before using it for production data.

Curl & wget

Note

To run the examples below you need to have a UI (or CUA) account that is configured within dCache and authorized to the data you want to access. Contact us if you need assistance with that.

Creating directories

To create a directory with curl:

$curl --capath /etc/grid-security/certificates/ --fail --user homer \
 --request MKCOL https://webdav.grid.surfsara.nl/pnfs/grid.sara.nl/data/lsgrid/homer/directory

If on your system there are no Grid CA certificates available in /etc/grid-security/certificates/, please read host_certificates.

Transferring data

Uploading

To copy a file from your local machine to dCache:

$curl --capath /etc/grid-security/certificates/ --fail --location --user homer \
 --upload-file zap.tar \
 https://webdav.grid.surfsara.nl/pnfs/grid.sara.nl/data/lsgrid/homer/
$# replace homer with your username, lsgrid with your VO and zap.tar with your local file

The command will ask for the password of ‘homer’ on the command line. If you don’t want to type the password each time, specify --netrc and store the password in the .netrc file in your home dir. Make sure it is not readable by others (chmod 600 .netrc). See man curl for more details. An example .netrc file is:

$ cat .netrc
machine webdav.grid.surfsara.nl
login <your_username>
password <your_pwd>

Note

It is possible to specify the password on the command line like this: --user homer:password. However, for security reasons this should be avoided on shared systems (like the UI) because it allows other local users to read the password with the ps command.

Downloading

To copy a file from dCache to your local machine:

$curl --capath /etc/grid-security/certificates/ --fail --location --user homer \
 https://webdav.grid.surfsara.nl/pnfs/grid.sara.nl/data/lsgrid/homer/zap.tar \
 --output zap.tar

Or with wget:

$wget --user=homer --ask-password --ca-directory=/etc/grid-security/certificates \
 https://webdav.grid.surfsara.nl/pnfs/grid.sara.nl/data/lsgrid/homer/zap.tar

The --ca-directory is probably not necessary anymore. If it is, but you don’t have an /etc/grid-security/certificates directory, you could specify --no-check-certificate, but we don’t recommend this.

Downloading with proxy authentication

To download a file while using a proxy to authenticate, you first have to create your proxy, see StartGridSession.

Then use a command like this:

$curl --location --capath /etc/grid-security/certificates/ \
 --cert $X509_USER_PROXY --cacert $X509_USER_PROXY \
 https://webdav.grid.surfsara.nl:2882/pnfs/grid.sara.nl/data/lsgrid/homer/zap.tar

Note

It is possible that your proxy DN is mapped to another user account than your own CUA user account. If you have permission issues with either username or proxy and not the other, contact us to check the user mapping.

Note: wget does not support certificate/proxy authentication.

Partial downloads

With Curl you can download only part of a file by specifying –range. Example:

$curl --fail --location --capath /etc/grid-security/certificates/ \
 --user homer \
 https://webdav.grid.surfsara.nl/pnfs/grid.sara.nl/data/lsgrid/homer/myfile \
 --range 0-4 \
 --output first-5-bytes

Renaming

With proxy authentication

$curl --capath /etc/grid-security/certificates/ --fail --location \
 --cert $X509_USER_PROXY --cacert $X509_USER_PROXY \
 --request MOVE \
 https://webdav.grid.surfsara.nl:2882/pnfs/grid.sara.nl/data/lsgrid/homer/oldfile \
 --header "Destination:https://webdav.grid.surfsara.nl:2882/pnfs/grid.sara.nl/data/lsgrid/homer/newfile"

File properties and locality are not changed. A file that is stored on tape (nearline) will stay on tape, even if it is moved to a directory for disk-only files.

With username/password authentication

$curl --capath /etc/grid-security/certificates/ --fail --location-trusted \
 --user homer \
 --request MOVE \
 https://webdav.grid.surfsara.nl:2880/pnfs/grid.sara.nl/data/lsgrid/homer/oldfile \
 --header "Destination:https://webdav.grid.surfsara.nl:2880/pnfs/grid.sara.nl/data/lsgrid/homer/newfile"

Please note the differences with the previous example:

	--location-trusted will send the username and password also to the destination server.

	Port 2880 is used for username/password authentication.

Removing data

Deleting a file from dCache:

$curl --capath /etc/grid-security/certificates/ --user homer --location \
 --request DELETE https://webdav.grid.surfsara.nl/pnfs/grid.sara.nl/data/lsgrid/homer/zap.tar

Querying file properties

With curl and a dCache WebDAV door, it’s possible to request file properties. This works both with username/password and proxy authentication, provided you use the correct port (443 or 2880 for username/password, 2882 or 2883 for proxy authentication).

Locality

This example shows how to query the file locality: whether a file is online or nearline (on tape). This example uses username/password authentication:

$echo -e '<?xml version="1.0"?>\n
 <a:propfind xmlns:a="DAV:">
 <a:prop><srm:FileLocality xmlns:srm="http://srm.lbl.gov/StorageResourceManager"/></a:prop>
 </a:propfind>' \
| curl --silent --fail --capath /etc/grid-security/certificates/ \
 --user homer --request PROPFIND \
 https://webdav.grid.surfsara.nl:2880/pnfs/grid.sara.nl/data/lsgrid/homer/zap.tar \
 --header "Content-Type: text/xml" --upload - \
| xmllint -format -

See Staging files for more information about file locality.

Adler32 checksums

This example shows how to get the Adler32 checksum of a stored file. dCache uses Adler32 checksums by default, but this can be configured per project.

The returned checksum comes from the dCache database, so it is a very efficient way to check your files. dCache does checksum checks on most operations, so you can safely assume the checksum matches the stored file.

$curl --head --header 'Want-Digest: ADLER32' --silent --fail --capath /etc/grid-security/certificates/ \
 --user homer \
 https://webdav.grid.surfsara.nl/pnfs/grid.sara.nl/data/lsgrid/homer/myfile \
| grep 'adler32='

Here an example output:

Digest: adler32=46fd067a

Here is an alternative way to query an Adler32 checksum:

$echo -e '<?xml version="1.0"?>\n
 <a:propfind xmlns:a="DAV:">
 <a:prop><srm:Checksums xmlns:srm="http://www.dcache.org/2013/webdav"/></a:prop>
 </a:propfind>' \
| curl --silent --fail --capath /etc/grid-security/certificates/ \
 --user homer --request PROPFIND \
 https://webdav.grid.surfsara.nl/pnfs/grid.sara.nl/data/lsgrid/homer/myfile \
 --header "Content-Type: text/xml" --upload - \
| xmllint -format - \
| egrep -o '<ns1:Checksums>.*</ns1:Checksums>'

Here is an example of the expected output:

$<ns1:Checksums>adler32=46fd067a</ns1:Checksums>

There’s a script that uses the above technique to retrieve checksums: https://github.com/onnozweers/dcache-scripts/blob/master/get-file-checksum

MD5 checksums

dCache is configured to use Adler32 checksums by default. However, in some cases, dCache may have a file’s MD5 checksum in its database.

You can use WebDAV to retrieve the MD5 checksum of a file, when it is in dCache’s database. It’s a bit more complicated than Adler32 because MD5 checksums are presented in base64 encoding, as prescribed by RFC 3230.

$curl --head --header 'Want-Digest: MD5' --silent --fail --capath /etc/grid-security/certificates/ \
 --user homer \
 https://webdav.grid.surfsara.nl:2880/pnfs/grid.sara.nl/lsgrid/homer/myfile \
| grep -o 'md5=.*' \
| sed -e 's/md5=//' -e 's/[\r\n]*$//' \
| base64 --decode \
| xxd -p

The output should look similar to this:

0f43fa5a262c476393018f7329080fa7

An alternative way to query an MD5 checksum:

$echo -e '<?xml version="1.0"?>\n
 <a:propfind xmlns:a="DAV:">
 <a:prop><srm:Checksums xmlns:srm="http://www.dcache.org/2013/webdav"/></a:prop>
 </a:propfind>' \
| curl --silent --fail --capath /etc/grid-security/certificates/ \
 --user homer --request PROPFIND \
 https://webdav.grid.surfsara.nl:2880/pnfs/grid.sara.nl/lsgrid/homer/myfile \
 --header "Content-Type: text/xml" --upload - \
| xmllint -format - \
| egrep -o '<ns1:Checksums>md5=.*</ns1:Checksums>' \
| sed -e 's#<ns1:Checksums>[^=]*=\([^<]*\)</ns1:Checksums>#\1#' \
| base64 --decode \
| xxd -p

Queries can be combined to reduce transaction overhead:

$echo -e '<?xml version="1.0"?>\n
 <a:propfind xmlns:a="DAV:">
 <a:prop><srm:RetentionPolicy xmlns:srm="http://srm.lbl.gov/StorageResourceManager"/></a:prop>
 <a:prop><srm:AccessLatency xmlns:srm="http://srm.lbl.gov/StorageResourceManager"/></a:prop>
 <a:prop><srm:FileLocality xmlns:srm="http://srm.lbl.gov/StorageResourceManager"/></a:prop>
 <a:prop><srm:Checksums xmlns:srm="http://www.dcache.org/2013/webdav"/></a:prop>
 </a:propfind>' \
| curl ...

There’s a script that uses the above technique to retrieve checksums: https://github.com/onnozweers/dcache-scripts/blob/master/get-file-checksum

Rclone

Rclone is a command line tool that you can download from https://rclone.org/downloads/. It works on many platforms and it can talk to many storage systems besides WebDAV.

Advantages of Rclone are:

	It can sync directories, like rsync does

	For directories, it uses parallel transfers, 4 by default, to get a better performance

For authentication, Rclone can use username/password (from the CUA) or token based (macaroon, see below) authentication, but not X509 certificate/proxy authentication. If you have a Grid certificate and want to use Rclone, you can use get-macaroon with your Grid certificate or proxy to create an Rclone config file with a macaroon for authentication; see the chapter below.

Note

New versions of Rclone will use multiple streams for files that are larger than 200 MB, but dCache may not support that. Please use Rclone with --multi-thread-streams 1. Rclone will then only use one stream per file, but it will still do 4 files in parallel when copying directories.

Note

The default idle timeout in Rclone is 5 minutes. This may be too short for the checksum calculation phase when uploading large files (>10GB). You can increase it with --timeout=240m.

Note

When uploading files from multiple Rclone clients in parallel, please add --no-traverse as argument. Rclone by default does a directory listing before upload. When this is done in parallel for large directories, it can be bad for performance.

The first time you use rclone, you need to make a profile with rclone config.

As the remote URL, you can use for example https://webdav.grid.surfsara.nl:443/pnfs/grid.sara.nl/data/lsgrid/homer (for performance) or https://webdav.grid.surfsara.nl:2880/pnfs/grid.sara.nl/data/lsgrid/homer (with encrypted transport).

An example of a profile:

[dcache]
url = https://webdav.grid.surfsara.nl:2880/pnfs/grid.sara.nl/data/lsgrid/homer
vendor = other
user = homer
pass = *** ENCRYPTED ***

An example of using rclone to copy a directory:

$rclone --multi-thread-streams 1 --timeout=240m --no-traverse copy mydir dcache:rclone-test

More information on how to use rclone with WebDAV is here: https://rclone.org/webdav/. There are also graphical user interfaces to rclone; one is RcloneBrowser [https://github.com/mmozeiko/RcloneBrowser].

Sharing data with Macaroons

Macaroons are bearer tokens that authorize someone to access certain directories or files. With this technique, you can share (some of) your data with anyone else. The other person does not need to have a user account or a certificate; only a WebDAV client that supports bearer tokens. Clients that support this are Curl, Rclone and (read only) ordinary browsers such as Firefox. Cyberduck does not support it (yet [https://trac.cyberduck.io/ticket/10378]).

A Macaroon may contain caveats that limit access. Such caveats can be based on the data path, the activities that may be performed with the data (list, download, upload, etc.), the IP address of the client, or a maximum validity period.

Warning

Always add sufficient caveats to your Macaroons to avoid theft and abuse!

For your convenience, we’ve created a script called get-macaroon [https://github.com/sara-nl/GridScripts/blob/master/get-macaroon] that makes it easy to obtain a Macaroon. It’s installed on the UI. Example:

12:12 ui.grid.surfsara.nl:/home/homer
homer$ get-macaroon --url https://webdav.grid.surfsara.nl:2880/pnfs/grid.sara.nl/data/lsgrid/homer/Shared/ --chroot --user homer --duration PT1H --permissions DOWNLOAD,LIST
Enter host password for user 'homer':
https://webdav.grid.surfsara.nl:2880/?authz=MDAxY2xvY2F0aW9uIE9wdGlvbmFsLmVtcHR5CjAwMThpZGVudGlmaWVyIGNOMDBnRHRSCjAwMmVjaWQgaWQ6MzEwMjk7MzEwNDAsNDQ0MzYsNDEzODUsMzAwMTM7b25ubwowMDI4Y2lkIGJlZm9yZToyMDE4LTA3LTA1VDEyOjIxOjM3LjQzMVoKMDAzZGNpZCByb290Oi9wbmZzL2dyaWQuc2FyYS5ubC9kYXRhL3VzZXJzL29ubm8vRGlzay9TaGFyZWQvCjAwMWZjaWQgYWN0aXZpdHk6RE9XTkxPQUQsTElTVAowMDJmc2lnbmF0dXJlIODcyEAeF-oe2VxwSpym6rPP7fNKprXTQEH2qlXwaLKACg

The printed link can be pasted into a browser’s address bar, or provided as an argument to curl for download.

When uploading (or downloading) with curl, the token can be provided in a custom header (replace <token> with the Macaroon):

$curl --header 'Authorization: BEARER <token>' --upload-file myfile https://webdav.grid.surfsara.nl:2880/

The script can also create an Rclone config file:

$get-macaroon --url https://webdav.grid.surfsara.nl:2880/pnfs/grid.sara.nl/data/lsgrid/homer/Shared/ --chroot --user homer --duration PT1H --permissions DOWNLOAD,LIST --output rclone homers-share
Enter host password for user 'homer':
Creating rclone config file homers-share.conf:
....
Send this file to the persons you want to share data with.
They need rclone v1.42-012-gfa051ff9 or newer to access the data.
Example command:
rclone --config=homers-share.conf ls homers-share:

You can get a Macaroon with X509 authentication too. Please note, that port 2883 is used for this. The lifetime of your proxy does not limit the lifetime of the macaroon.

$voms-proxy-init -voms lsgrid:/lsgrid
Enter GRID pass phrase for this identity:
....
Your proxy is valid until Fri Jul 06 01:37:31 CEST 2018

$get-macaroon --url https://webdav.grid.surfsara.nl:2883/pnfs/grid.sara.nl/data/lsgrid/homer/Shared --proxy --chroot --duration PT1H
https://webdav.grid.surfsara.nl:2883/?authz=MDAxY2xvY2F0aW9uIE9wdGlvbmFsLmVtcHR5CjAwMThpZGVudGlmaWVyIGNOMDBnRHRSCjAwMzZjaWQgaWQ6MzY0OTQ7MzE4ODMsNDQ0MzYsNDEzODUsMzEwNDAsMzAwMTM7bHNncmlkCjAwMjhjaWQgYmVmb3JlOjIwMTgtMDctMDVUMTI6Mzg6MDAuODg5WgowMDM5Y2lkIHJvb3Q6L3BuZnMvZ3JpZC5zYXJhLm5sL2RhdGEvbHNncmlkL2hvbWVyL1NoYXJlZAowMDFmY2lkIGFjdGl2aXR5OkRPV05MT0FELExJU1QKMDAyZnNpZ25hdHVyZSBwshmIGsGrEfDt0Mg1wdK00Wgt6lGyps9IQX_zh2OGkwo

For more information, see the dCache User Guide: https://dcache.org/manuals/UserGuide-7.2/webdav.shtml#requesting-macaroons

Graphical access with Cyberduck

To work with WebDAV on Windows or Mac OS X, you can install Cyberduck from here: https://cyberduck.io/. Please note that the App store package costs money; the download from the website is free, but will ask for a donation.

	Download the .zip file, open it, and drag the .app file into your Applications folder to install it.

	Open a WebDAV (HTTP/SSL) connection and connect to the server with your UI account username and password:

https://webdav.grid.surfsara.nl/pnfs/grid.sara.nl/data/lsgrid/ # replace lsgrid with your VO

[image: ../../../_images/cyberduck.png]

Cyberduck with a user certificate

Normally, one would authenticate to dCache using a user certificate or proxy. dCache determines your identity based either on your user certificate or proxy DN, or on your VOMS credentials. However, if you authenticate with your CUA username & password, that identity might not be the same and you may not have access to your own data.

To work around this, it may be useful to have Cyberduck authenticate you using your user certificate.

Note

Most users are authenticated based on the VOMS credentials of their proxy. Since you will not use a VOMS proxy but a certificate, this identity mapping won’t work and you may not have access. Instead, we may need to map your DN onto the desired identity instead of your VOMS credentials. If you want to use Cyberduck with certificate authentication, contact us so that we can map your DN to the desired identity.

Here is how to configure Cyberduck for certificate authentication on OS X:

First, import your user certificate in p12 format into the Keychain Access. It should look something like this:

[image: ../../../_images/cyberduck-usercert-1.png]
Second, go to Cyberduck and create a bookmark with these settings:

[image: ../../../_images/cyberduck-usercert-2.png]
If your institute blocks outgoing traffic to port 2882 and 2883, you can use server webdav-cert.grid.sara.nl and port 443, as described at the top of this page.

Right-click the bookmark and choose “Connect to server”.

[image: ../../../_images/cyberduck-usercert-3.png]
Choose your certificate.

[image: ../../../_images/cyberduck-usercert-4.png]

Mounting WebDAV with Mountain duck

Mountain Duck is a WebDAV client that can mount WebDAV in OS-X and Windows. We’ve had some mixed results using it with dCache, so you should test it before trusting it with your data. You can find it at https://mountainduck.io/.

fts client

This page includes the basic commands to use the FTS (File Transfer Service). For an overview of storage clients, see Storage clients.

Contents

	fts client

	FTS

	Introduction

	SURFsara FTS instance

	Authentication

	FTS file transfers

	Monitor Status

	Failed transfers

	Using the API with curl

FTS

Introduction

FTS Cern [https://fts.web.cern.ch/fts/] is a file transfer service for reliable file transfers across sites or else, third party transfers.
FTS queues, schedules and performs transfers, retrying it if necessary.
You cannot use it to transfer files from your local machine to dCache and vice-versa. FTS service has been running for
years. It was developed by Cern as the service responsible for distributing the majority of LHC data across the
WLCG infrastructure, up to petabytes per month.

From the user perspective, it allows data movement, retrying if necessary, monitoring and displaying usage statistics,
see FTS wiki [http://fts3-docs.web.cern.ch/fts3-docs/]. From the operations view, it optimises resource usage.

The wisdom of FTS is the Optimiser which decides whether to increase or decrease the amount of transfers attempted
at a time. It evaluates any symptoms of saturation and decreases the number of parallel transfers when there is an
increase of recoverable errors, or the throughput worsens.

FTS has a REST API and supports several transfer protocols, such as: GridFTP, SRM, Webdav/HTTPS, xroot.
It also supports several clients, such as: standard clients (e.g. curl), Python bindings, FTS CLI.

SURFsara FTS instance

Our FTS instance can be found at: SURFsara FTS UI [https://fts.grid.surfsara.nl:8449/]. The site can be accessed when you have a certificate installed
in your browser. The FTS UI provides a sophisticated and easy to use web interface for transfer management and monitoring.

The SURFsara FTS Rest API can be used from command-line clients or python bindings. Currently we do not support the WebFTS browser view.
The Cern website offers several examples to interact with the API with python, see FTS Easy Bindings [http://fts3-docs.web.cern.ch/fts3-docs/fts-rest/docs/easy/index.html].

The FTS command-line client is currently installed on the UI ui.grid.surfsara.nl and the API can be reached in port 8446.

The following graph depicts the FTS transfer lifecycle:

[image: ../../../_images/Using_the_File_Transfer_Service.png]

Authentication

To use the FTS you need to create a local proxy. The fts submit command automatically
delegates the proxy to the FTS server. The default lifetime is 12 hours. This means that you need to submit an
fts command at least once every 12h to renew the delegation, e.g. by checking the status of the transfers with an
fts-transfer-status command. When the remaining lifetime of the stored proxy passes under 4 hours,
fts-transfer-submit will automatically delegate a new one as long as there is a valid local proxy.

In our FTS instance that can be found at: SURFsara FTS UI [https://fts.grid.surfsara.nl:8449/] we limit the access to only some VOs, upon request.
You will need a proxy with a voms extension before you can use the rest interface.

Note

To run the examples in this page you need to have a valid local proxy. The voms-proxy-init tool can be used to generate a proxy with VOMS attributes from the personal certificate. Alternatively, you can use the startGridSession tool available on the SURFsara UIs. See also Starting a Grid session.

First, create a proxy with your VO attributes on the UI:

$startGridSession lsgrid #replace lsgrid with your own VO

FTS file transfers

Submit a transfer

The fts-transfer-submit command submits transfer-jobs by specifying the source and destination file location.
The file location can be a SURL, TURL or HTTPS link. For efficient
usage of the service, it is preferred that the source and destination endpoints are GridFTP or
SRM servers.

The output of the submit command is a unique ID that can be used for tracing the transfer status.

When the FTS transfer starts, it creates the target file with 0 bytes. If the transfer fails the target file is removed
independent to the amount of bytes that had already been transferred.

Note

We have noticed that using SURLs instead of TURLs slightly increases the performance (due to the SRM load balancer).

Basic options

Here are some basic options to use when initiating FTS transfers. The proposed values for retrials, parallel streams and
timeout settings depend on the amount of files and volume of data to be transferred. If you need help to estimate these
values, please contact us at helpdesk@surfsara.nl

	-v: enable verbose information

	-s https://fts.grid.surfsara.nl:8446: specify the fts server.

	-K: enable checksum. By default, adler32 is supported on the SURFsara servers.

	--retry 2 --retry-delay 300: in case of errors (timeouts, overwriting, etc) the file transfer will be retried after 5 minutes

	--nostreams 4: the longer the distance between the transfer endpoints, the more streams you need to achieve transfers less vulnerable to congestion

	--timeout 14400: this option helps in case of large file transfers to make sure that the connection will not timeout before the transfer is complete. If you omit this option, the default timeout is 4000 sec

File transfer - TURL to TURL

$fts-transfer-submit -s https://fts.grid.surfsara.nl:8446 \
$ gsiftp://gridftp.grid.sara.nl:2811/pnfs/grid.sara.nl/data/lsgrid/homer/zap.tar \
$ gsiftp://gridftp.grid.sara.nl:2811/pnfs/grid.sara.nl/data/lsgrid/penelope/zap.tar
#641d3436-8af1-11eb-ad12-fa163e7fa8c6

File transfer - SURL to SURL

$fts-transfer-submit -s https://fts.grid.surfsara.nl:8446 \
$ srm://srm.grid.sara.nl:8443/pnfs/grid.sara.nl/data/lsgrid/zap.tar \
$ srm://srm.grid.sara.nl:8443/pnfs/grid.sara.nl/data/lsgrid/penelope/zap.tar

File transfer - SURL to TURL

$fts-transfer-submit -s https://fts.grid.surfsara.nl:8446 \
$ srm://srm.grid.sara.nl:8443/pnfs/grid.sara.nl/data/lsgrid/homer/zap.tar \
$ gsiftp://gridftp.grid.sara.nl:2811/pnfs/grid.sara.nl/data/lsgrid/penelope/zap.tar

Note

Combinations between TURLS, SURLS, HTTPS and SRMv2 are possible.

Bulk transfers

If you have multiple files to transfer, you can submit the transfers in one bulk operation. Example:

$fts-transfer-submit -s https://fts.grid.surfsara.nl:8446 -f transfer-list.txt

The list of transfers should have this format:

file1-source-SURL-or-TURL file1-destination-SURL-or-TURL
file2-source-SURL-or-TURL file2-destination-SURL-or-TURL
...

An example:

srm://srm.grid.sara.nl:8443/pnfs/grid.sara.nl/data/lsgrid/homer/file1 srm://srm.grid.sara.nl:8443/pnfs/grid.sara.nl/data/lsgrid/penelope/file1
srm://srm.grid.sara.nl:8443/pnfs/grid.sara.nl/data/lsgrid/homer/file2 srm://srm.grid.sara.nl:8443/pnfs/grid.sara.nl/data/lsgrid/penelope/zap.tar/file2

More information and examples of bulk transfers and FTS in general can be found at CERN FTS documentation [http://fts3-docs.web.cern.ch/fts3-docs/docs/cli/cli.html] and Cern FTS Git repo [https://gitlab.cern.ch/fts/fts-rest/-/tree/develop/docs/easy/examples].

Monitor Status

Command line

The fts-transfer-submit command will return instantly an ID for the specific job. This ID can be used to trace the status of the transfer:

$fts-transfer-status -s https://fts.grid.surfsara.nl:8446 9e665677-76e5-4734-b729-b69e161da99a
replace the string '9e665677-76e5-4734-b729-b69e161da99a' with your transfer job ID

For bulk transfers, monitor the status overview of all submitted files with:

$fts-transfer-status -s https://fts.grid.surfsara.nl:8446 —list 9e665677-76e5-4734-b729-b69e161da99a | grep State: | sort | uniq —-count

Web interface

Alternative to the fts-transfer-status command, you can use the graphical interface in SURFsara FTS UI [https://fts.grid.surfsara.nl:8449/] to monitor the status and trace the logging information.

[image: ../../../_images/fts-transfers.png]
At the moment any jobs are visible to anyone under any VO, but this can be closed by our system administrators upon request, just contact us at helpdesk@surfsara.nl.

Failed transfers

In case that you monitor any failed transfers, then once the bulk transfer finishes, collect them and resubmit only the list with the files that failed.

Make a list to retry the failed transfers:

$fts-transfer-status -s https://fts.grid.surfsara.nl:8446 --list [JOBID] | grep -3 State:.*FAILED | egrep 'Source:|Destination:' | sed -e 's/ Source: //' -e 'N;s/\n Destination://' > srm_fts_retry1.txt # replace the [JOBID] with your bulk job ID

Submit the failed transfers with:

$fts-transfer-submit -s https://fts.grid.surfsara.nl:8446 --retry 2 --retry-delay 300 --nostreams 4 --timeout 14400 -f srm_fts_retry1.txt >> fts_jobids

Using the API with curl

	Get user information:

$curl --capath /etc/grid-security/certificates --cacert /tmp/x509up_uXXXX --cert /tmp/x509up_uXXX https://fts.grid.surfsara.nl:8446/whoami
##replace x509up_uXXXX with your proxy location and name

	Get your delegation ID:

$curl --capath /etc/grid-security/certificates --cacert /tmp/x509up_uXXXX --cert /tmp/x509up_uXXX https://fts.grid.surfsara.nl:8446/whoami | jq '.delegation_id'
##3d3ce1e83def1abc

	Check the expiration time of our delegated credentials

$curl --capath /etc/grid-security/certificates --cacert /tmp/x509up_uXXXX --cert /tmp/x509up_uXXXX https://fts.grid.surfsara.nl:8446/delegation/3d3ce1e83def1abc
##{"voms_attrs": ["/lsgrid/Role=NULL/Capability=NULL]"", "termination_time": "2021-03-23T09:31:33"}
##replace 3d3ce1e83def1abc with your delegation ID

	Get job information:

$curl --capath /etc/grid-security/certificates --cacert /tmp/x509up_uXXXX --cert /tmp/x509up_uXXXX https://fts.grid.surfsara.nl:8446/jobs/207773b6-8af8-11eb-90ed-fa163e7fa8c6
##replace 207773b6-8af8-11eb-90ed-fa163e7fa8c6 with your job ID

globusonline client

This page includes the basic commands to use globusonline. For an overview of storage clients,
see Storage clients.

Contents

	globusonline client

	About Globus Online

	Storage Endpoints

	Personal endpoints

	Activate a local machine endpoint

	Activate Grid UI endpoint

	Server endpoints

	Activate dCache endpoint

	Data transfers

	dCache transfers

	From local machine

	From Grid UI

About Globus Online

Globus Online provides a service to transfer files from one storage endpoint to another via the Web GUI or an API.
The Globus Online web service allows to monitor the transfer processes via the web interface and reschedules
transfers automatically when they fail.

There exists a python API which allows to steer and monitor the processes from within e.g. the data generating processes.
Via this API data transfers can be easily integrated into workflows.

The service is run on the Amazon cloud located in the US.

Storage Endpoints

In order to access, share, transfer, or manage data using Globus, the first step is to create an endpoint on the
system(s) where the data is (or will be) stored.

These endpoints can be:

	Globus Connect Personal endpoints:

	local machines like your laptop or a Virtual Machine

	personal accounts on login nodes connected to clusters like your home account on SURF grid UI or Spider UI [https://spiderdocs.readthedocs.io/en/latest/Pages/getting_started.html#logging-in].

Note

It is not possible to transfer data between two Personal endpoints, unless you use Globus Plus groups or managed subscriptions.

	Globus Connect Server endpoints:

	gridFTP servers, like the Grid Storage or SURFsara’s archive [https://www.surf.nl/en/services-and-products/data-archive/index.html].

Personal endpoints

On servers or computers that do not run GridFTP you will first have to install the Globus Connect client software.
Below we show how to define your laptop or your home folder on a User Interface machine as endpoint:

Activate a local machine endpoint

	Create an account here [https://www.globus.org/] by following the instructions

	Login to the web interface:

[image: ../../../_images/globusonline-login.png]

	Install the Globus Connect client supported by the OS of your local machine as described here [https://www.globus.org/globus-connect-personal]. There are different ways to install the client. Here we show examples on a Mac OS local machine:

	From the web interface select on the left ENDPOINTS and then click on ‘+Create a personal endpoint’:

[image: ../../../_images/globusonline-create-endpoint.png]

	Download and install the client:

[image: ../../../_images/globusonline-download.png]

	Start and setup the Globus Connect client:

[image: ../../../_images/globusonline-start-client.png]
[image: ../../../_images/globusonline-setup-client.png]
[image: ../../../_images/globusonline-setup-client2.png]

	You should see the Globus Connect client running (e.g in the menu bar)

	Check in the web interface that your local machine is activated as Globus Online endpoint. On the left select FILE MANAGER, and in the collection search box find your collection and click on it. You should see your local files:

[image: ../../../_images/globusonline-local-files.png]
You can now use your local machine to transfer files to other Globus Online endpoints.

Activate Grid UI endpoint

For a linux machine as the Grid UI, you need to configure the linux package for
Globus Connect Personal on your home UI account. The following steps assume that you already have
a Globus Online account. If not, please refer to the previous section.

	Log in to your UI account:

$ssh -YC homer@ui.grid.surfsara.nl # replace "homer" with your username

	Download the linux package for Globus Connect Personal and extract the files:

$wget https://downloads.globus.org/globus-connect-personal/linux/stable/globusconnectpersonal-latest.tgz
$tar xzf globusconnectpersonal-latest.tgz
$cd globusconnectpersonal-x.y.z/ # replace x.y.z with the version number

	Start the installation and follow the steps. Execute the globus client on non graphical mode:

$./globusconnectpersonal -setup --no-gui

	A login url will be displayed. Copy and paste it in your browser

	Assuming that you already have a Globus account, login to globus using the displayed url

	Provide a label for future reference and click next. An authorization code will be displayed in your browser. Copy it and paste it on the Grid UI next to the prompt Enter the auth code:. Then provide a name for this collection as “Input a value for the Endpoint Name:”

	If everything went well then you should get a message “setup completed successfully”

	From now on you can use the Grid UI home account to transfer data via Globus. Everytime you use Globus, you need to start the client on the UI in order to activate it as an endpoint:

$./globusconnectpersonal -start

	The command above will define your home folder on a grid user interface machine as endpoint. If you wish to grant access to other paths that you have access on the same machine, then you can define a comma separated list of full paths that Globus may access as (If no prefix is present, r/w is assumed):

$././globusconnectpersonal -start -restrict-paths /project/myData/

Note

The ./globusconnectpersonal -start command will keep your session open and the endpoint activated until you stop it with Ctrl+C

	Open a browser in your laptop (the Grid UI Firefox is quite slow) and login to your Globus account to see your new Grid UI Personal endpoint. It should be in status ‘ready’:

[image: ../../../_images/globusonline-ui-endpoint.png]

	Select the Grid UI endpoint from the tab ‘Your Collections’ in your FILE MANAGER to see your home data:

[image: ../../../_images/globusonline-ui-endpoint2.png]
[image: ../../../_images/globusonline-ui-endpoint3.png]

Note

To transfer data between two Globus Connect Personal endpoints, you must be a member of a Globus Plus Group or at least one of the endpoints must be managed under a Globus subscription (i.e Globus server endpoints).

Server endpoints

When you use GridFTP as transfer protocol either the source or the destination has to be GridFTP-enabled.
The storage endpoints can be different servers or only different locations on the same server.
Globus online makes use of Grid proxies for GridFTP transfers. The data transfer is executed on behalf of the
user with the use of his/her Grid proxy. Thus, a user needs to have the following
when using GlobusOnline together with dCache:

	A personal Grid certificate

	A VO membership

Activate dCache endpoint

	To activate a GridFTP-enabled endpoint the user needs to provide the service with a Grid proxy. Login to the grid UI, start a Grid session and create a Grid proxy on the proxy server:

$ssh -YC homer@ui.grid.surfsara.nl
$startGridSession lsgrid #replace lsgrid with your VO
$myproxy-init --voms lsgrid -l homer #replace lsgrid with your VO and homer e.g. with your name. The username is only valid for this proxy and could be anything you choose.
Enter GRID pass phrase for this identity: [give your grid certificate passwword]
Enter MyProxy pass phrase: [give any passphrase you like. This passphrase will be used later to activate the dCache endpoint]

	Login to the Globus web interface from a browser in your laptop and on the left go to ENDPOINTS. On top search for surf#dCache_gridftp. This GridFTP endpoint points at the dCache Grid storage.

[image: ../../../_images/globusonline-dcache1.png]

	To activate the dCache Gridftp endpoint, click on the surf#dCache_gridftp endpoint and then ‘Activate’. Provide the username and passphrase from the previous step when you created a proxy on the grid UI and click ‘Authenticate’:

[image: ../../../_images/globusonline-dcache2.png]
[image: ../../../_images/globusonline-dcache3.png]
[image: ../../../_images/globusonline-dcache4.png]

	Check in the web interface that the dCache endpoint is activated as Globus Online endpoint. On the left select FILE MANAGER, and provide the following details in the ‘Collection’ and ‘Path’. You should see your dCache VO files:

	Collection: surf#dCache_gridftp

	Path: /pnfs/grid.sara.nl/data/lsgrid/SURFsara/ #replace with your VO and project path

[image: ../../../_images/globusonline-dcache5.png]
[image: ../../../_images/globusonline-dcache6.png]

Data transfers

Before data can be transferred you need to activate the endpoints from/to which data should be transferred.
Globus Online executes data transfers on behalf of a user. Data transfers can be easily started employing the web interface. You have to provide the names of the endpoints
from and to which the data is transferred.

Data to be transferred is selected by marking it and then clicking one of the arrows to determine sink and source.
The current state of data transfers can be monitored in the ACTIVITY tab.

Interacting with Globusonline is possible via the Web Interface or with a python API. The examples here show the
webinterface transfers.

dCache transfers

Transferring data to/from dCache requires that the dCache endpoint is activated and a Grid proxy is provided
by the user and instantiated with his/her Grid credentials/certificates.

Creating bookmarks of your endpoints and desired storage paths allows you to define easily the source and target
data locations prior to the transfers. You can create bookmarks on the Web interface:

[image: ../../../_images/globusonline-bookmark1.png]
[image: ../../../_images/globusonline-bookmark2.png]
[image: ../../../_images/globusonline-bookmark3.png]
The next sections give some examples for data transfers between the activated endpoints.

From local machine

	From the web interface, go to FILE MANAGER and click on the Collection box. Your bookmarks are displayed. Select your local machine:

[image: ../../../_images/globusonline-local-transfers1.png]
[image: ../../../_images/globusonline-local-transfers2.png]

	Go to FILE MANAGER and on the right side of the page, click on the Collection box. Your bookmarks are displayed. Select your dCache_gridftp endpoint:

[image: ../../../_images/globusonline-local-transfers3.png]

	Go to FILE MANAGER and select the source and target directories and files. When ready, click ‘Start’:

[image: ../../../_images/globusonline-local-transfers4.png]

	In the ACTIVITY tab you can monitor the transfer progress:

[image: ../../../_images/globusonline-local-transfers5.png]

From Grid UI

	From the web interface, go to FILE MANAGER and click on the Collection box. Your bookmarks are displayed. Select your Grid UI endpoint:

[image: ../../../_images/globusonline-ui-transfer1.png]

	Go to FILE MANAGER and on the right side of the page, click on the Collection box. Your bookmarks are displayed. Select your dCache_gridftp endpoint:

[image: ../../../_images/globusonline-bookmark3.png]

	Go to FILE MANAGER and select the source and target directories and files. When ready, click ‘Start’:

[image: ../../../_images/globusonline-ui-transfer2.png]

	In the ACTIVITY tab you can monitor the transfer progress:

[image: ../../../_images/globusonline-ui-transfer3.png]
Refresh the directory contents of the target endpoint to see your transferred files.

Grid job requirements

By telling what your job needs, you help the scheduler in finding the
right place to run your jobs, and it also helps using the different
compute nodes in the Grid efficiently.

This chapter describes how to write the requirements, how the
requirements determine where your jobs will run, and what they tell the
scheduler. Job requirements are provided as parameters in the JDL file.

Contents

	Grid job requirements

	Requirement syntax

	Requirements

	Specifying Wall Clock time via the queue

	Specifying CPU Time

	Selecting particular Grid site or CE

	Multicore jobs

Requirement syntax

Job requirements are written as an optional statement in the JDL file:

Attribute = <parameter>;

See also

For detailed information about JDL attributes supported by the DIRAC, have a look in the DIRAC documentation [https://dirac.readthedocs.io/en/latest/UserGuide/GettingStarted/UserJobs/JDLReference/].

Requirements

Specifying Wall Clock time via the queue

Typically on grid sites, by specifying the wall clock time requirement the scheduler picks a
queue which is long enough for running the job. In the DIRAC configuration at SURF site (Gina), only the long queue (Walltime of 96 hours) is supported at this point. You can use the following convention to specify it:

Tags={"long"};

If you do not specify this, the jobs that run at SURF will automatically be scheduled on the long queue. If you specify any other queue your jobs will not run at SURF site.

Specifying CPU Time

You may also choose to specify a CPU Time, but at SURF site all jobs will land on the long queue (96 hours) irrespective of the CPU Time specified. But specifying this attribute may offer flexibility for you to use the same JDL for different grid sites where a CPU Time attribute is used to match the job to the correct queue. You can specify this attribute as follows:

CPUTime = 345600; #this is in seconds for the long queue

Warning

If a job is not actively using CPU for
more than 30 min, it will be considered as stalled and
automatically killed by DIRAC Watchdog

Selecting particular Grid site or CE

You may choose a specific Grid site or a CE to run your jobs on, depending on which sites allow jobs for the specific VO:

Site = {"GRID.SURF.nl"};
GridCE = {"arc01.gina.surfsara.nl"};

If you are using DIRAC to submit your jobs, you do not have to specify either one of the parameters (unless you want your jobs to/not to run at a specific site).

Multicore jobs

Numberof Processors is the number of CPU cores requested. SMPGranularity is the number of cores that must be scheduled on the same host:

Request just 4 cores on a single node
SmpGranularity = 4;
NumberOfProcessors = 4;

Note that if you do not specify SmpGranularity the requested number of cores can be distributed over different nodes, which is only useful for MPI (or likewise) applications.

Warning

If you are running a multi-core process in your job, and
you do not set the correct number of CPU cores, you will
oversubscribe a compute node, slowing down your own analysis,
as well as others.

Grid certificates

In this section we discuss Grid user certificates in more detail; how to
convert certificates, and how to find out the details of your Grid
certificate.

Contents

	Grid certificates

	Certificate and key file inspection

	Using the modulus to see whether a key and a certificate match

	Finding the expiry date of your certificate

	Finding the subject of your certificate

	Conversion of key and certificate formats

	Converting from PKCS12 to PEM

	Converting from PEM to PKCS12

Once you have obtained and installed a legacy certificate there are some openssl commands that can help you inspect the information stored in your certificate. This section will show you how to do this.

Certificate and key file inspection

Sometimes you want to view the details of your key and/or your certificate
file. Details like:

	do the key and the certificate file go together?

	when does the certificate expire?

	what is the subject or DN (Distinguished Name) of the certificate?

Using the openssl command, you can find out the details of your
certificates and keys.

Using the modulus to see whether a key and a certificate match

The modulus is a short message that can be used to identify if a private
key and certificate match. If they do not match, the private key and
certificate are useless.

To find the modulus of your key, use:

openssl rsa -in userkey.pem -noout -modulus | openssl md5

You will be asked to provide the password you used to protect your key file.
To find the modulus of your certificate, use:

openssl x509 -in usercert.pem -noout -modulus | openssl md5

If the md5 sum of the moduli of the key file and the certificate file do not match, you
cannot use that combination to identify yourself.

Finding the expiry date of your certificate

To find out when your certificate is valid, use:

openssl x509 -in usercert.pem -noout -dates

This will tell you when your certificate is valid.

Note that a key does not have a validity period.

Finding the subject of your certificate

The subject or DN of a certificate is the human-readable identification of who
the certificate belongs to. It usually contains your name, country,
organisation and your e-mail address.

To find out who the certificate belongs to, use:

openssl x509 -in usercert.pem -noout -subject

Conversion of key and certificate formats

Private keys and certificates can be stored in different formats.
Different systems use different formats. The two important formats are:

	PEM: stores keys and certificates in separate ascii-files; this
format is used by the Grid middleware and storage programs;

	PKCS12: stores keys and certificates in one binary file; this
format is used by browsers.

Sectigo creates PKCS12 files, whereas DutchGrid creates PEM files.

Converting from PKCS12 to PEM

To convert a PKCS12 file to the PEM format, you need two commands; one to
extract the key, and one to extract your certificate.

To extract your key, run:

openssl pkcs12 -in browsercert.p12 -out userkey.pem -nocerts

Note that you will first need to enter the password that was used to
create the PKCS12 file. Next, you need to enter a password to protect
the exported key. Enter that password again to verify. Note that you must
enter a password and the password must be at least 12 characters and include non-alphanumerics; if the password is too short, openssl will fail without error. You can use the same password as for the PKCS12 file.

To extract your certificate, run:

openssl pkcs12 -in browsercert.p12 -out usercert.pem -nokeys -clcerts

Converting from PEM to PKCS12

To convert your certificate in PEM format to the PKCS12-format, use:

openssl pkcs12 -export -inkey userkey.pem -in usercert.pem -out browsercert.p12

This will ask you for a password three times: the first is to unlock your
private key stored in the file userkey.pem. The PKCS12-file
will be password protected, which needs a new password, and the same
password for confirmation. Note that you can use the same password
as for the private key, but this is not required.

When you import the PKCS12-file into your browser or keychain, you need
to enter the password you used to protect the PKCS12-file.

Contents

	Grid host certificates

	Certificate Revocation Lists

	Telling your browser to trust host certificates

Grid host certificates

Apart from Grid user certificates, there are also Grid host certificates. Host certificates are used to establish trust between hosts on the grid. If you use our user interfaces or Grid compute clusters, you don’t have to worry about these; we’ll make sure they contain the right host certificates and their dependencies.

If you configure your own user interface, or if you intend to run GridFTP or Webdav clients on your own machines, you will need to install the Grid Certificate Authority (CA) root certificates. Your client software needs CA root certificates to know whether to trust the host certificate of the server they’re talking to.

If you want to install the Grid CA root certificates, please follow the instructions here: https://wiki.egi.eu/wiki/EGI_IGTF_Release

After installation, you will find the Grid CA root certificates in /etc/grid-security/certificates/. You can point clients like curl there:

$curl --capath /etc/grid-security/certificates/

Note

Many clients allow you to bypass verification of host certificates. This may seem like an easy solution, but it bypasses a security layer. We recommend that you don’t bypass host certificate checking but install the Grid CA root certificates.

Certificate Revocation Lists

Certificate Revocation Lists or CRLs declare which host certificates have been revoked, for instance because they have been compromised. A utility called fetch-crl downloads these CRLs. It’s good practice to set up fetch-crl as a cron job. You can find more information about this at https://wiki.nikhef.nl/grid/FetchCRL3.

Telling your browser to trust host certificates

Not every browser trusts Grid host certificates. You might see the error SEC_ERROR_UNKNOWN_ISSUER in Firefox. This means, that Firefox does not have the root CA certificate that was used to sign a specific host certificate. The solution is, to import the root CA certificate into the browser. But which one? Here are some tips to help you.

The eugridpma.org website has a map that helps you to find relevant Certificate Authorities and their root CA certificates: https://www.eugridpma.org/members/worldmap/

In Firefox, you can view the certificate information of a website. Very often, this information includes a link to the issuing CA root certificate you need to trust this certificate. See this image:

[image: ../../_images/Firefox-find-certificate-issuer.png]
Here is a command to get the issuer of a host certificate, in this example of webdav.grid.surfsara.nl:

$echo | openssl s_client -connect webdav.grid.surfsara.nl:443 -CApath /etc/grid-security/certificates/ 2>/dev/null \
| openssl x509 -noout -text \
| egrep -o 'https{0,1}://.*\.(pem|crt|der)'

This will show:

http://cacerts.digicert.com/TERENAeScienceSSLCA3.crt

You can copy this link and paste it in the URL field to import the root certificate into Firefox. After that, Firefox will trust all sites with host certificates signed by this root certificate.

Parametric jobs

The pilot jobs use the technique of parametric jobs for the job submission to the Grid. In this page we give an example of parametric jobs:

Contents

	Parametric jobs

	About

	Example

About

Pilot jobs are submitted to the Grid with a specific Job Description Language type called Parametric. A parametric job causes a set of jobs to be generated from one JDL file.

Example

In the example below, the parametric job will create 3 child jobs that will all run the same executable. The value %j will be replaced by the actual value of Parameters during the JDL expansion.

ParameterStart defines the starting value for the variation, ParameterStep the step for each variation and Parameters defines the value where the submission of jobs will stop (that value itself is not used) . The number of jobs is:
(Parameters – ParameterStart) / ParameterStep

	Log in to your User Interface.

	Create a file with the following content describing the job requirements. Save it as parametric.jdl:

 1[
 2 Type = "Job";
 3 JobName = "Parametric";
 4 ParameterStart = 0;
 5 ParameterStep = 1;
 6 Parameters = 3;
 7
 8 Executable = "/bin/hostname";
 9 Arguments = "-f";
10 StdOutput = "StdOut_%j"; #Name of the file to get the standard output stream
11 StdError = "StdErr_%j"; #Name of the file to get the standard error stream
12 OutputSandbox = {"StdOut_%j","StdErr_%j"}; #j placeholder replaced by Dirac job ID
13
14 Site = "GRID.SURF.nl"; #Job destination site
15 NumberOfProcessors = 1; #Number of cores on a single node, options: 1,2,4,or 8
16 Tags = {"long"}; #Queue name, long default walltime is 96 hours
17 #CPUTime = 1000; #Max CPU time required by the job in seconds
18]

	You can submit the parametric job as any Grid job:

$dirac-wms-job-submit parametric.jdl -f jobIds

In this case, 3 child jobs will be generated. Each job will generate two files: StdOut_0 and StdErr_0, StdOut_1 and StdErr_1, StdOut_2 and StdErr_2.

	Monitor the job status to see the the parent job and the 3 child jobs with their status:

$dirac-wms-job-status -f jobIds
JobID=82 Status=Running; Site=GRID.SURF.nl; MinorStatus=Running;
JobID=83 Status=Running; Site=GRID.NIKHEF.nl; MinorStatus=Running;
JobID=84 Status=Running; Site=GRID.SURF.nl; MinorStatus=Running;
JobID=85 Status=Running; Site=GRID.NIKHEF.nl; MinorStatus=Running;

This is just an example. In practice you shouldn’t send more than 50 jobs this way (Parameters=50). The parametric jobs is the technology used for submitting the pilot jobs. There is no need to monitor their status or retrieve the job output through Dirac as the pilot frameworks will take care of this.

Bootstrap application

When you have a binary program that you want to execute on the Grid you need to create a bootstrap application. This will execute a wrapper script that contains all the necessary information for your job to run. In this page we will show an example to run your bootstrap application on the Grid:

Contents

	Bootstrap application

	Problem description

	Quickstart example

	Preamble

	Run locally

	Run on the Grid

Problem description

You want to execute your own binary program on the Grid. When you have a binary program that you want to execute on the Grid you can send it along with the job submission. This can be done when the executable is not too large. The limit is about 100MB, for larger executables you can use Softdrive or the Grid storage.

Bootstrap basics

See also

Have a look at our mooc video Executables on Grid for a simple example to get started.

To send such an executable along we will use the InputSandBox in the job description. The program itself will be executed by a simple shell script (“wrapper.sh”). There are several reasons to wrap the call to your executable with a script. One important one is that the executable file might not have executable permissions after it is copied to the Grid worker node. A second is that it is more flexible in the use of input parameters and also to redirect the output. In short, this script provides the correct environment for the execution of the binary.

In this page we will demonstrate a simple bootstrap application using the fractals example.

Quickstart example

Preamble

	Log in to the User Interface (UI):

$ssh homer@ui.grid.sara.nl # replace homer with your username

	Copy the tarball bootstrap_fractals-dirac.tar to your UI directory.

	Copy the fractals source code fractals.c to your UI directory.

	Untar the example and check the files:

$tar -xvf bootstrap_fractals-dirac.tar
$cd bootstrap_fractals-dirac/
$mv ../fractals.c ./
$ls -l

-rw-r--r-- 1 homer homer fractals.c
-rw-rw-r-- 1 homer homer fractals.jdl
-rw-rw-r-- 1 homer homer wrapper.sh

	Compile the example:

$cc fractals.c -o fractals -lm

Warning

It is advisable to compile your programs on the User Interface (UI) Machine. The Grid nodes have similar environments and the chance of your job to run successfully on a remote worker node is larger when your program is able to run on the UI.

Run locally

	Run the example locally on the UI with a set of parameters to understand the program:

$./fractals -o output -q 0.184 -d 2280 -m 4400 # try different parameters, e.g. -q 0.184 -d 2280 -m 4400

This will take a while, depending on the input parameters you selected. Once finished, it will create the “output” file.

	Convert the output file to .png format and display the picture:

$convert output "output.png"
$display output.png

Run on the Grid

	Create a proxy valid for a week:

$source /etc/dirac/pro/bashrc #enable the software environment to use Dirac tools
$dirac-proxy-init -b 2048 -g pvier_user -M pvier --valid 168:00 # replace pvier with your VO

	Inspect the JDL file fractals.jdl:

[
Type = "Job";
Jobname = "bootstrap";
Executable = "/bin/sh";
Arguments = "wrapper.sh";
StdOutput = "stdout";
StdError = "stderr";
InputSandbox = {"wrapper.sh","fractals"};
OutputSandbox = {"stdout","stderr","output"};
]

In the JDL file we specify the content of the in- and output sandboxes. These sandboxes allow you to transfer small files to or from the Grid. The input sandbox contains all the files that you want to send with your job to the worker node, like e.g. the fractals script that you want executed. The output sandbox contains all the files that you want to have transferred back to the UI, e.g. the output fractals image.

	Inspect the contents of the wrapper.sh script:

$cat wrapper.sh
#!/bin/bash
chmod u+x fractals
./fractals -o output -q 0.184 -d 2280 -m 4400
...

Once this jobs lands on the Grid, it will execute the wrapper.sh script which is a master script to set the program environment and initiate the program execution. In the wrapper.sh script you may include also the commands to retrieve input from a Grid storage location or transfer the output results to a Grid storage location.

	Submit the job to the Grid:

$dirac-wms-job-submit fractals.jdl -f jobIds

	Check the job status from command line on the UI:

$dirac-wms-job-status -f jobIDs

	Once the job is finished, get the job output to the UI:

$dirac-wms-job-get-output -f jobIds

	Convert the output file to .png format and display the picture:

$convert output-dir/output "output.png" # replace with your job output directory
$display output.png

Parametric jobs

The pilot jobs use the technique of parametric jobs for the job submission to the Grid. In this page we give an example of parametric jobs:

Contents

	Parametric jobs

	About

	Example

About

Pilot jobs are submitted to the Grid with a specific Job Description Language type called Parametric. A parametric job causes a set of jobs to be generated from one JDL file.

Example

In the example below, the parametric job will create 3 child jobs that will all run the same executable. The value %j will be replaced by the actual value of Parameters during the JDL expansion.

ParameterStart defines the starting value for the variation, ParameterStep the step for each variation and Parameters defines the value where the submission of jobs will stop (that value itself is not used) . The number of jobs is:
(Parameters – ParameterStart) / ParameterStep

	Log in to your User Interface.

	Create a file with the following content describing the job requirements. Save it as parametric.jdl:

 1[
 2 Type = "Job";
 3 JobName = "Parametric";
 4 ParameterStart = 0;
 5 ParameterStep = 1;
 6 Parameters = 3;
 7
 8 Executable = "/bin/hostname";
 9 Arguments = "-f";
10 StdOutput = "StdOut_%j"; #Name of the file to get the standard output stream
11 StdError = "StdErr_%j"; #Name of the file to get the standard error stream
12 OutputSandbox = {"StdOut_%j","StdErr_%j"}; #j placeholder replaced by Dirac job ID
13
14 Site = "GRID.SURF.nl"; #Job destination site
15 NumberOfProcessors = 1; #Number of cores on a single node, options: 1,2,4,or 8
16 Tags = {"long"}; #Queue name, long default walltime is 96 hours
17 #CPUTime = 1000; #Max CPU time required by the job in seconds
18]

	You can submit the parametric job as any Grid job:

$dirac-wms-job-submit parametric.jdl -f jobIds

In this case, 3 child jobs will be generated. Each job will generate two files: StdOut_0 and StdErr_0, StdOut_1 and StdErr_1, StdOut_2 and StdErr_2.

	Monitor the job status to see the the parent job and the 3 child jobs with their status:

$dirac-wms-job-status -f jobIds
JobID=82 Status=Running; Site=GRID.SURF.nl; MinorStatus=Running;
JobID=83 Status=Running; Site=GRID.NIKHEF.nl; MinorStatus=Running;
JobID=84 Status=Running; Site=GRID.SURF.nl; MinorStatus=Running;
JobID=85 Status=Running; Site=GRID.NIKHEF.nl; MinorStatus=Running;

This is just an example. In practice you shouldn’t send more than 50 jobs this way (Parameters=50). The parametric jobs is the technology used for submitting the pilot jobs. There is no need to monitor their status or retrieve the job output through Dirac as the pilot frameworks will take care of this.

Picas Overview

This page is about the PiCaS pilot framework:

Contents

	Picas Overview

	About PiCaS

	Source Code

	Picas server

	Picas client

	How to use

	Grant access on Picas

	Background: CouchDB

	Picas views

About PiCaS

Let’s say that you have a number of tasks to be processed on the Grid Worker Nodes. Each task requires a set of parameters to run. The parameters of each task (run id, input files, etc) construct an individual piece of work, called token, which is just a description - not the task itself.

The central repository for the tasks is PiCaS, a Token Pool Server. The pilot jobs request the next free token for processing from PiCaS. As said, the content of the tokens is opaque to PiCaS and can be anything your application needs.

PiCaS works as a queue, providing a mechanism to step through the work one token at a time. It is also a pilot job system, indicating that the client communicates with the PiCaS server to fetch work, instead of having that work specified in a jdl (or similar) file.

The server is based on CouchDB [http://couchdb.apache.org/] (see CouchDB book [http://guide.couchdb.org/]), a NoSQL database, and the client side is written in Python.

Source Code

The source code of PiCaS is on Github Picas Client [https://github.com/jjbot/picasclient/].

Picas server

More about Picas Server?

See also

Check out our mooc videos Picas server side Part I and Part II.

On the server side we have a queue which keeps track of which tokens are available, locked or done. This allows clients to easily retrieve new pieces of work and allows also easy monitoring of the resources. As every application needs different parameters, the framework has a flexible data structure that allows users to save different types of data. Because of this, tokens can contain any kind of information about a task: (a description of) the work that needs to be done, output, logs, a progress indicator etc.

The server is a regular CouchDB server with some specific views installed. For more information on this, see the Background: CouchDB section.

Picas client

More about Picas Client?

See also

Check out our mooc video Picas client side

The PiCaS client library was created to ease communication with the CouchDB back-end. It allows users to easily upload, fetch and modify tokens. The system has been implemented as a Python Iterator, which means that the application is one large for loop that keeps on running as long as there is work to be done. The client is written in Python and uses the python couchdb module, which requires at least python version 2.6. The client library is constructed using a number of modules and classes, most important of these are:

	The Actors module contains the RunActor class. This is the class that has to be overwritten to include the code that calls the different applications (tasks) to run.

	The Clients module contains a CouchClient class that creates a connection to CouchDB.

	The Iterators module contains classes responsible for working through the available tokens. The BasicViewIterator class assumes that all the token information is encoded directly into the CouchDB documents.

	The Modifiers module is responsible for modification of the PiCaS tokens. It makes sure the tokens are modified in a uniform way.

How to use

The source code includes a simple example of how to use PiCaS. You’ll have to write your pilot job in Python. Using PiCaS boils down to these steps:

	Extend the RunActor class and overwrite the necessary methods:

	process_token; should be implemented and contain the code to process your task.

	prepare_env; is called only once, before the first run of this pilot job. For example, this is a good place to download a database that will be used by all tasks.

	prepare_run; is called before each task. For example, this is a good place to create output directories or open database connections

	cleanup_run; is called after each task. For example, this is a good place to clean up anything setup in prepare_run. Note that it is not guaranteed that this code will be run. For example in the case of a failure during process_token

	cleanup_env; is called only once, just before the pilot job is shutting down. For example, this is a good place to clean up anything setup during prepare_env (remember to clean up your temporary files when you leave!). Note that it is not guaranteed that this code will run as the job can be interrupted or crash before this.

	Instantiate a CouchClient

	Instantiate a BasicTokenModifier

	Instantiate a BasicViewIterator (and provide it the CouchClient and BasicTokenModifier)

	Instantiate your RunActor subclass (and provide it the BasicViewIterator and BasicTokenModifier)

	Call the run() method of your RunActor to start processing tokens

For another example, see the Picas Example in our documentation.

Grant access on Picas

Any user with a Grid project and allocated quotas can get a PiCaS account and also obtain a database on the CouchDB server. If you want access, just contact us at helpdesk@surfsara.nl to discuss your design implementation and request your PiCaS credentials.

Background: CouchDB

PiCaS server is based on CouchDB. CouchDB stores documents which are self-contained pieces of information. These documents support a dynamic data model, so unlike traditional databases, CouchDB allows storing and retrieving any piece of information as long as it can be defined as key-value pairs. This feature is used to store all the information needed to keep track of the job stages and all of the required in- and outputs.

CouchDB also provides a Restful HTTP API, which means that we can easily access information with an HTTP client. This can be a browser, a command-line application like curl or a complete client library. It is also possible to interact with the CouchDB database behind PiCaS using the web-interface.

Picas views

CouchDB views are the basic query mechanism in CouchDB and allow you to extract, transform and combine data from different documents stored in the same database. This process is based on the Map/Reduce paradigm. In the case of CouchDB, the Map step takes every document from a database and applies a piece of code. It then sorts the output of that step based on the key that you supply and give it to the reducer. The code you supply for the reducer combines data from the mapper that have the same key.

[image: ../../../_images/picas_views.png]
The map code works on a ‘per document’ basis, so every document is run through that code one by one. The emit statement returns the value to the reduce command, again, this is all done for every document. In this case we are only interested in the type of the document, and as we want to count how many of each type there are, we provide the type as the key for the emit statement.

Picas Example

This page presents a PiCaS pilot job example:

Contents

	Picas Example

	Problem description

	Prerequisites

	Picas sample example

	Prepare your Tokens

	Create the Tokens

	Upload your Tokens to the PiCaS server

	Run the example locally

	Run the example on the Grid

	Checking failed jobs

Problem description

More about Picas in practice?

See also

Check out our mooc videos Picas examples Part I and Part II.

In this example we will implement the following pilot job workflow:

	First we define and generate the application tokens with all the necessary parameters.

	Then we define and create a shell script to process one task (process_task.sh) that will be sent with the job using the input sandbox. This contains some boiler plate code to e.g. setup the environment, download software or data from the Grid storage, run the application etc. This doesn’t have to be a shell script, however, setting up environment variables is easiest when using a shell script, and this way setup scripts are separated from the application code.

	We also define and create a Python script to handle all the communication with the token pool server, call the process_task,sh script, catch errors and do the reporting.

	Finally we define the JDL on the User Interface machine to specify some general properties of our jobs. This is required to submit a batch of pilot jobs to the Grid that will in turn initiate the Python script as defined in the previous step.

Prerequisites

To be able to run the example you must have:

	All the three Grid Prerequisites (User Interface machine, Grid certificate, VO membership)

	An account on PiCaS server (send your request to <helpdesk@surfsara.nl>)

Picas sample example

	Log in to the UI and download the pilot_picas_fractals.tgz example, the couchdb package for Python couchdb.tgz and the fractals source code fractals.c.

	Untar pilot_picas_fractals.tgz and inspect the content:

$tar -xvf pilot_picas_fractals.tgz
$cd pilot_picas_fractals/
$ls -l
-rwxrwxr-x 1 homer homer 1247 Jan 28 15:40 createTokens
-rw-rw-r-- 1 homer homer 1202 Jan 28 15:40 createTokens.py
-rw-rw-r-- 1 homer homer 2827 Jan 28 15:40 createViews.py
-rw-rw-r-- 1 homer homer 462 Jan 28 15:40 fractals.jdl
drwxrwxr-x 2 homer homer 116 Jan 28 15:40 sandbox

Detailed information regarding the operations performed in each of the scripts below is embedded to the comments inside each of the scripts individually.

	Also download the current PiCaS version picas.tar and put both PiCaS and the couchdb.tgz file in the sandbox directory:

$cd sandbox
$mv ../../couchdb.tgz ./
$mv ../../picas.tgz ./

	And finally compile the fractals program (and put it in the sandbox directory) and move one directory up again:

$cc ../../fractals.c -o fractals -lm
$cd ..

The sandbox directory now holds everything we need to send to the Grid worker nodes.

Prepare your Tokens

Create the Tokens

This example includes a bash script (./createTokens) that generates a sensible parameter file, with each line representing a set of parameters that the fractals program can be called with. Without arguments it creates a fairly sensible set of 24 lines of parameters. You can generate different sets of parameters by calling the program with a combination of -q, -d and -m arguments, but at the moment no documentation exists on these. We recommend not to use them for the moment.

	After you ran the createTokens script you’ll see output similar to the following:

$./createTokens
/tmp/tmp.fZ33Kd8wXK
$cat /tmp/tmp.fZ33Kd8wXK

Upload your Tokens to the PiCaS server

Now we will start using PiCaS. For this we need the downloaded CouchDB and PiCaS packages for Python and set the hostname, database name and our credentials for the CouchDB server:

	Edit sandbox/picasconfig.py and set the PiCaS host URL, database name, username and password.

	Link the picasconfig.py file in the current directory. This makes it available for the scripts that need to upload the tokens to CouchDB:

$ln sandbox/picasconfig.py

	Make the CouchDB package locally available:

$tar -xvf sandbox/couchdb.tgz

	Upload the tokens:

$python createTokens.py /tmp/tmp.fZ33Kd8wXK

	Check your database in this link:

https://picas.surfsara.nl:6984/_utils/database.html?homerdb

replace homerdb with your Picas database name

	Create the Views (pools) - independent to the tokens (should be created only once):

$python createViews.py

Run the example locally

	If you submit the jobs on the UI, the job will start fetching tokens from the pool server and run the application locally on the UI machine:

$cd sandbox/
$./startpilot.sh

Connected to the database homerdb sucessfully. Now starting work...

Working on token: token_2
lock 1453570581
_rev 2-8d7f141114b7335b50612ba4dfb92b3d
hostname ui
exit_code
scrub_count 0
done 0
input -q 0.100 -d 256 -m 8400
output
_id token_2
type token

/usr/bin/time -v ./process_task.sh "-q 0.100 -d 256 -m 8400" token_2 2> logs_token_2.err 1> logs_token_2.out

Working on token: token_6
lock 1453570589
...

You can monitor the progress for the Tokens that are waiting, running, finished or in error state, from the PiCaS website here:

https://picas.grid.sara.nl:6984/_utils/

While the UI has started processing tokens, submit the pilot jobs to the Grid. Continue to the next section …

Run the example on the Grid

	Create a proxy:

$dirac-proxy-init -b 2048 -g lsgrid_user -M lsgrid --valid 168:00 # replace lsgrid with your VO

	Submit the pilot jobs:

$dirac-wms-job-submit fractals.jdl -f jobIDs

It will recursively generate an image based on parameters received from PiCas. At this point, some of your tokens are processed on the Grid worker nodes and some of the tokens are already processed on the UI. Note that the UI is not meant for production runs, but only for testing few runs before submitting the pilot jobs to the Grid.

	Convert the UI output file to .png format and display the picture:

$convert output_token_6 output_token_6.png # replace with your output filename

For the tokens that are processed on Grid, you can send the output to the Grid Storage or some other remote location.

Checking failed jobs

While your pilot jobs process tasks, you can keep track of their progress through the CouchDB web interface. There are views installed to see:

	all the tasks that still need to be done (Monitor/todo)

	the tasks that are locked (Monitor/locked)

	tasks that encountered errors (Monitor/error)

	tasks that are finished (Monitor/done)

When all your pilot jobs are finished, ideally, you’d want all tasks to be ‘done’. However, often you will find that not all jobs finished successfully and some are still in a ‘locked’ or ‘error’ state. If this happens, you should investigate what went wrong with these jobs. Incidentally, this will be due to errors with the Grid middleware, network or storage. In those cases, you can remove the locks and submitting some new pilot jobs to try again. In other cases, there could be errors with your task: maybe you’ve sent the wrong parameters or forgot to download all necessary input files. Reviewing these failed tasks gives you the possibility to correct them and improve your submission scripts. After that, you could run those tasks again, either by removing their locks or by creating new tokens if needed and then submitting new pilot jobs.

Pilot jobs

In this page we will show you how to run pilot jobs on the Grid and track the status of hundreds jobs running at a time:

Contents

	Pilot jobs

	About pilot jobs

	Pilot Job Workflow

	Pilot job database

	Pilot job advantages

	Pilot job submission

	Pilot Job Frameworks

About pilot jobs

More about Pilot jobs?

See also

Check out our mooc video Pilot Job Frameworks

When you have tens, hundreds of jobs that you submit to the Grid you may find yourself writing software which checks the status of all those jobs and tries to find out which ones have succeeded and which ones should be resubmitted.

In addition, when submitting a large number of jobs you will often find that they need to operate on the same database or some other static datasource. For every jobsubmission this database then has to be copied to the node the job is running on. This introduces a large overhead per job.

A solution to these problems is to use a pilot job framework. Such frameworks start by submitting a number of pilot jobs to the Grid. Pilot jobs are like normal jobs, but instead of executing the task directly they contact a central server once they are running on a worker node. Then, and only then, will they be assigned a task, get their data and start executing. The central server handles the request from pilot jobs and keeps a log of what tasks are being handled, are finished, and can still be handed out. The pilot job can request a new task, report the successful completion of a task just executed or report that it is still working on the task it received previously. When the task server doesn’t hear about the progress or completion of a task it has distributed, it will assume the pilot job is either dead or the job has failed. As a result the task will be assigned to another pilot job after it has made a request for a new task.

A pilot job will not die after it has successfully completed a task, but immediately ask for another one. It will keep asking for new jobs, until there is nothing else to do, or its wall clock time is up. This reduces overhead for jobsubmission considerably.

Pilot Job Workflow

The picture below illustrates the workflow of pilot job systems: (1), the user uploads work to the central database. This could be a list of parameter settings that need to be executed using some application on a computational resource. The user then (2) submits jobs just containing the application to the Grid, which handles retrieving from (3) and updating of (4) the job database. This process continues until all the work present in the database has been done, the application has crashed or the job has run out of time on the computational resource. When all work has been done, the user retrieves (5) the results from the database.

[image: ../../_images/parametric_jobs.png]

Pilot job database

In pilot frameworks, the database server is a server which is not necessarily tied to Grid infrastructure. In fact, you can have simple access to a pilot job server with your Internet browser or with HTTP command line clients like wget and curl.

The concept of token pools can also be used to create workflows. A task server can deal out tokens from different pools in succession and pilot jobs can remove tokens from pools (by processing them) and create tokens in other pools.

Pilot job advantages

Notice that when you use pilot frameworks you do not have to worry about job failures. When jobs fail they will not request and process new tasks. The user should not look at the pilot jobs he/she has submitted but to the number of tasks being processed. There is no need to keep track of submitted (pilot) jobs and resubmit those (and only those) that failed. Remember a pilot job will die if all tasks have been processed.

A second advantage of using pilot jobs is the reduced overhead of job submission. Once a pilot job is in place it will process tasks as long as there are any, or it’s wall clock time (the maximum time a job is allowed to run) is up. This can also be advantageous for jobs who all need to transfer a large datafile. In the last example, a database should be downloaded from a SE to the Worker Node were the job is running. Note, that this is always the same database for all jobs. When a pilot job is running and is processing task after task it only needs to download the database once.

Pilot job submission

To be able to submit multiple pilot jobs at once, they are submitted to the Grid with a specific JDL type called Parametric. Learn more about this technique in parametric jobs section.

Pilot Job Frameworks

There are several pilot frameworks for the Grid. At SURFsara we support PiCaS:

	Picas Overview

	Picas Example

Parametric jobs

The pilot jobs use the technique of parametric jobs for the job submission to the Grid. In this page we give an example of parametric jobs:

Contents

	Parametric jobs

	About

	Example

About

Pilot jobs are submitted to the Grid with a specific Job Description Language type called Parametric. A parametric job causes a set of jobs to be generated from one JDL file.

Example

In the example below, the parametric job will create 3 child jobs that will all run the same executable. The value %j will be replaced by the actual value of Parameters during the JDL expansion.

ParameterStart defines the starting value for the variation, ParameterStep the step for each variation and Parameters defines the value where the submission of jobs will stop (that value itself is not used) . The number of jobs is:
(Parameters – ParameterStart) / ParameterStep

	Log in to your User Interface.

	Create a file with the following content describing the job requirements. Save it as parametric.jdl:

 1[
 2 Type = "Job";
 3 JobName = "Parametric";
 4 ParameterStart = 0;
 5 ParameterStep = 1;
 6 Parameters = 3;
 7
 8 Executable = "/bin/hostname";
 9 Arguments = "-f";
10 StdOutput = "StdOut_%j"; #Name of the file to get the standard output stream
11 StdError = "StdErr_%j"; #Name of the file to get the standard error stream
12 OutputSandbox = {"StdOut_%j","StdErr_%j"}; #j placeholder replaced by Dirac job ID
13
14 Site = "GRID.SURF.nl"; #Job destination site
15 NumberOfProcessors = 1; #Number of cores on a single node, options: 1,2,4,or 8
16 Tags = {"long"}; #Queue name, long default walltime is 96 hours
17 #CPUTime = 1000; #Max CPU time required by the job in seconds
18]

	You can submit the parametric job as any Grid job:

$dirac-wms-job-submit parametric.jdl -f jobIds

In this case, 3 child jobs will be generated. Each job will generate two files: StdOut_0 and StdErr_0, StdOut_1 and StdErr_1, StdOut_2 and StdErr_2.

	Monitor the job status to see the the parent job and the 3 child jobs with their status:

$dirac-wms-job-status -f jobIds
JobID=82 Status=Running; Site=GRID.SURF.nl; MinorStatus=Running;
JobID=83 Status=Running; Site=GRID.NIKHEF.nl; MinorStatus=Running;
JobID=84 Status=Running; Site=GRID.SURF.nl; MinorStatus=Running;
JobID=85 Status=Running; Site=GRID.NIKHEF.nl; MinorStatus=Running;

This is just an example. In practice you shouldn’t send more than 50 jobs this way (Parameters=50). The parametric jobs is the technology used for submitting the pilot jobs. There is no need to monitor their status or retrieve the job output through Dirac as the pilot frameworks will take care of this.

Picas Overview

This page is about the PiCaS pilot framework:

Contents

	Picas Overview

	About PiCaS

	Source Code

	Picas server

	Picas client

	How to use

	Grant access on Picas

	Background: CouchDB

	Picas views

About PiCaS

Let’s say that you have a number of tasks to be processed on the Grid Worker Nodes. Each task requires a set of parameters to run. The parameters of each task (run id, input files, etc) construct an individual piece of work, called token, which is just a description - not the task itself.

The central repository for the tasks is PiCaS, a Token Pool Server. The pilot jobs request the next free token for processing from PiCaS. As said, the content of the tokens is opaque to PiCaS and can be anything your application needs.

PiCaS works as a queue, providing a mechanism to step through the work one token at a time. It is also a pilot job system, indicating that the client communicates with the PiCaS server to fetch work, instead of having that work specified in a jdl (or similar) file.

The server is based on CouchDB [http://couchdb.apache.org/] (see CouchDB book [http://guide.couchdb.org/]), a NoSQL database, and the client side is written in Python.

Source Code

The source code of PiCaS is on Github Picas Client [https://github.com/jjbot/picasclient/].

Picas server

More about Picas Server?

See also

Check out our mooc videos Picas server side Part I and Part II.

On the server side we have a queue which keeps track of which tokens are available, locked or done. This allows clients to easily retrieve new pieces of work and allows also easy monitoring of the resources. As every application needs different parameters, the framework has a flexible data structure that allows users to save different types of data. Because of this, tokens can contain any kind of information about a task: (a description of) the work that needs to be done, output, logs, a progress indicator etc.

The server is a regular CouchDB server with some specific views installed. For more information on this, see the Background: CouchDB section.

Picas client

More about Picas Client?

See also

Check out our mooc video Picas client side

The PiCaS client library was created to ease communication with the CouchDB back-end. It allows users to easily upload, fetch and modify tokens. The system has been implemented as a Python Iterator, which means that the application is one large for loop that keeps on running as long as there is work to be done. The client is written in Python and uses the python couchdb module, which requires at least python version 2.6. The client library is constructed using a number of modules and classes, most important of these are:

	The Actors module contains the RunActor class. This is the class that has to be overwritten to include the code that calls the different applications (tasks) to run.

	The Clients module contains a CouchClient class that creates a connection to CouchDB.

	The Iterators module contains classes responsible for working through the available tokens. The BasicViewIterator class assumes that all the token information is encoded directly into the CouchDB documents.

	The Modifiers module is responsible for modification of the PiCaS tokens. It makes sure the tokens are modified in a uniform way.

How to use

The source code includes a simple example of how to use PiCaS. You’ll have to write your pilot job in Python. Using PiCaS boils down to these steps:

	Extend the RunActor class and overwrite the necessary methods:

	process_token; should be implemented and contain the code to process your task.

	prepare_env; is called only once, before the first run of this pilot job. For example, this is a good place to download a database that will be used by all tasks.

	prepare_run; is called before each task. For example, this is a good place to create output directories or open database connections

	cleanup_run; is called after each task. For example, this is a good place to clean up anything setup in prepare_run. Note that it is not guaranteed that this code will be run. For example in the case of a failure during process_token

	cleanup_env; is called only once, just before the pilot job is shutting down. For example, this is a good place to clean up anything setup during prepare_env (remember to clean up your temporary files when you leave!). Note that it is not guaranteed that this code will run as the job can be interrupted or crash before this.

	Instantiate a CouchClient

	Instantiate a BasicTokenModifier

	Instantiate a BasicViewIterator (and provide it the CouchClient and BasicTokenModifier)

	Instantiate your RunActor subclass (and provide it the BasicViewIterator and BasicTokenModifier)

	Call the run() method of your RunActor to start processing tokens

For another example, see the Picas Example in our documentation.

Grant access on Picas

Any user with a Grid project and allocated quotas can get a PiCaS account and also obtain a database on the CouchDB server. If you want access, just contact us at helpdesk@surfsara.nl to discuss your design implementation and request your PiCaS credentials.

Background: CouchDB

PiCaS server is based on CouchDB. CouchDB stores documents which are self-contained pieces of information. These documents support a dynamic data model, so unlike traditional databases, CouchDB allows storing and retrieving any piece of information as long as it can be defined as key-value pairs. This feature is used to store all the information needed to keep track of the job stages and all of the required in- and outputs.

CouchDB also provides a Restful HTTP API, which means that we can easily access information with an HTTP client. This can be a browser, a command-line application like curl or a complete client library. It is also possible to interact with the CouchDB database behind PiCaS using the web-interface.

Picas views

CouchDB views are the basic query mechanism in CouchDB and allow you to extract, transform and combine data from different documents stored in the same database. This process is based on the Map/Reduce paradigm. In the case of CouchDB, the Map step takes every document from a database and applies a piece of code. It then sorts the output of that step based on the key that you supply and give it to the reducer. The code you supply for the reducer combines data from the mapper that have the same key.

[image: ../../../_images/picas_views.png]
The map code works on a ‘per document’ basis, so every document is run through that code one by one. The emit statement returns the value to the reduce command, again, this is all done for every document. In this case we are only interested in the type of the document, and as we want to count how many of each type there are, we provide the type as the key for the emit statement.

Picas Example

This page presents a PiCaS pilot job example:

Contents

	Picas Example

	Problem description

	Prerequisites

	Picas sample example

	Prepare your Tokens

	Create the Tokens

	Upload your Tokens to the PiCaS server

	Run the example locally

	Run the example on the Grid

	Checking failed jobs

Problem description

More about Picas in practice?

See also

Check out our mooc videos Picas examples Part I and Part II.

In this example we will implement the following pilot job workflow:

	First we define and generate the application tokens with all the necessary parameters.

	Then we define and create a shell script to process one task (process_task.sh) that will be sent with the job using the input sandbox. This contains some boiler plate code to e.g. setup the environment, download software or data from the Grid storage, run the application etc. This doesn’t have to be a shell script, however, setting up environment variables is easiest when using a shell script, and this way setup scripts are separated from the application code.

	We also define and create a Python script to handle all the communication with the token pool server, call the process_task,sh script, catch errors and do the reporting.

	Finally we define the JDL on the User Interface machine to specify some general properties of our jobs. This is required to submit a batch of pilot jobs to the Grid that will in turn initiate the Python script as defined in the previous step.

Prerequisites

To be able to run the example you must have:

	All the three Grid Prerequisites (User Interface machine, Grid certificate, VO membership)

	An account on PiCaS server (send your request to <helpdesk@surfsara.nl>)

Picas sample example

	Log in to the UI and download the pilot_picas_fractals.tgz example, the couchdb package for Python couchdb.tgz and the fractals source code fractals.c.

	Untar pilot_picas_fractals.tgz and inspect the content:

$tar -xvf pilot_picas_fractals.tgz
$cd pilot_picas_fractals/
$ls -l
-rwxrwxr-x 1 homer homer 1247 Jan 28 15:40 createTokens
-rw-rw-r-- 1 homer homer 1202 Jan 28 15:40 createTokens.py
-rw-rw-r-- 1 homer homer 2827 Jan 28 15:40 createViews.py
-rw-rw-r-- 1 homer homer 462 Jan 28 15:40 fractals.jdl
drwxrwxr-x 2 homer homer 116 Jan 28 15:40 sandbox

Detailed information regarding the operations performed in each of the scripts below is embedded to the comments inside each of the scripts individually.

	Also download the current PiCaS version picas.tar and put both PiCaS and the couchdb.tgz file in the sandbox directory:

$cd sandbox
$mv ../../couchdb.tgz ./
$mv ../../picas.tgz ./

	And finally compile the fractals program (and put it in the sandbox directory) and move one directory up again:

$cc ../../fractals.c -o fractals -lm
$cd ..

The sandbox directory now holds everything we need to send to the Grid worker nodes.

Prepare your Tokens

Create the Tokens

This example includes a bash script (./createTokens) that generates a sensible parameter file, with each line representing a set of parameters that the fractals program can be called with. Without arguments it creates a fairly sensible set of 24 lines of parameters. You can generate different sets of parameters by calling the program with a combination of -q, -d and -m arguments, but at the moment no documentation exists on these. We recommend not to use them for the moment.

	After you ran the createTokens script you’ll see output similar to the following:

$./createTokens
/tmp/tmp.fZ33Kd8wXK
$cat /tmp/tmp.fZ33Kd8wXK

Upload your Tokens to the PiCaS server

Now we will start using PiCaS. For this we need the downloaded CouchDB and PiCaS packages for Python and set the hostname, database name and our credentials for the CouchDB server:

	Edit sandbox/picasconfig.py and set the PiCaS host URL, database name, username and password.

	Link the picasconfig.py file in the current directory. This makes it available for the scripts that need to upload the tokens to CouchDB:

$ln sandbox/picasconfig.py

	Make the CouchDB package locally available:

$tar -xvf sandbox/couchdb.tgz

	Upload the tokens:

$python createTokens.py /tmp/tmp.fZ33Kd8wXK

	Check your database in this link:

https://picas.surfsara.nl:6984/_utils/database.html?homerdb

replace homerdb with your Picas database name

	Create the Views (pools) - independent to the tokens (should be created only once):

$python createViews.py

Run the example locally

	If you submit the jobs on the UI, the job will start fetching tokens from the pool server and run the application locally on the UI machine:

$cd sandbox/
$./startpilot.sh

Connected to the database homerdb sucessfully. Now starting work...

Working on token: token_2
lock 1453570581
_rev 2-8d7f141114b7335b50612ba4dfb92b3d
hostname ui
exit_code
scrub_count 0
done 0
input -q 0.100 -d 256 -m 8400
output
_id token_2
type token

/usr/bin/time -v ./process_task.sh "-q 0.100 -d 256 -m 8400" token_2 2> logs_token_2.err 1> logs_token_2.out

Working on token: token_6
lock 1453570589
...

You can monitor the progress for the Tokens that are waiting, running, finished or in error state, from the PiCaS website here:

https://picas.grid.sara.nl:6984/_utils/

While the UI has started processing tokens, submit the pilot jobs to the Grid. Continue to the next section …

Run the example on the Grid

	Create a proxy:

$dirac-proxy-init -b 2048 -g lsgrid_user -M lsgrid --valid 168:00 # replace lsgrid with your VO

	Submit the pilot jobs:

$dirac-wms-job-submit fractals.jdl -f jobIDs

It will recursively generate an image based on parameters received from PiCas. At this point, some of your tokens are processed on the Grid worker nodes and some of the tokens are already processed on the UI. Note that the UI is not meant for production runs, but only for testing few runs before submitting the pilot jobs to the Grid.

	Convert the UI output file to .png format and display the picture:

$convert output_token_6 output_token_6.png # replace with your output filename

For the tokens that are processed on Grid, you can send the output to the Grid Storage or some other remote location.

Checking failed jobs

While your pilot jobs process tasks, you can keep track of their progress through the CouchDB web interface. There are views installed to see:

	all the tasks that still need to be done (Monitor/todo)

	the tasks that are locked (Monitor/locked)

	tasks that encountered errors (Monitor/error)

	tasks that are finished (Monitor/done)

When all your pilot jobs are finished, ideally, you’d want all tasks to be ‘done’. However, often you will find that not all jobs finished successfully and some are still in a ‘locked’ or ‘error’ state. If this happens, you should investigate what went wrong with these jobs. Incidentally, this will be due to errors with the Grid middleware, network or storage. In those cases, you can remove the locks and submitting some new pilot jobs to try again. In other cases, there could be errors with your task: maybe you’ve sent the wrong parameters or forgot to download all necessary input files. Reviewing these failed tasks gives you the possibility to correct them and improve your submission scripts. After that, you could run those tasks again, either by removing their locks or by creating new tokens if needed and then submitting new pilot jobs.

GPU jobs

In this page we will show you how to run jobs that use GPUs on the Grid:

Contents

	GPU jobs

	About GPU jobs

	GPU job submission

	Quick GPU example

	Example GPU Job

About GPU jobs

Certain problems you want to run on special hardware to decrease the runtime of your program, such as on a GPU. The Grid has started to support and run GPUs jobs. This section contains the best practices of running GPU jobs on the Dutch Grid, as supported by SURF.

GPU job submission

To submit a GPU job to the Grid, the JDL file must contain a tag field set to gpu. This field looks like the following:

Tags = {"gpu"};

This will put your job in the GPU queue after which the job lands on a compute element (CE) that contains a GPU and can run the relevant code.

Quick GPU example

To quickly run the example, download the shell-script and jdl-file as given below.
For the full explanation on what the job just did, see the instructions in the Example GPU Job section.

	Copy the shell-script gpu_job.sh to your UI directory:

$wget http://doc.grid.surfsara.nl/en/latest/_downloads/gpu_job.sh

	Copy the jdl-file gpu_job.sh to your UI directory:

$wget http://doc.grid.surfsara.nl/en/latest/_downloads/gpu_job.jdl

And submit the job with:

$dirac-wms-job-submit gpu_job.jdl
JobID = 123

And inspect the output after retrieving the files with:

$dirac-wms-job-get-output 123

Example GPU Job

An example of a GPU job starts with the code we want to run. For this example, we decide to run a CUDA example made by Nvidia, which can be found at github [https://github.com/NVIDIA/cuda-samples.git]. To ensure the code runs on the Grid, it is containerized with apptainer [https://apptainer.org/] and the container is distributed through CVMFS.

To build the container yourself, you can run

$apptainer build --fakeroot --nv --sandbox cuda_example_unpacked.sif cuda_example.def

on a machine with apptainer installed, where the user has fakeroot privileges. The cuda_example.def definitions file contains the following recipe:

Bootstrap: docker
From: nvidia/cuda:11.8.0-devel-centos7

%post
#This section is run inside the container
yum -y install git make
mkdir /test_repo
cd /test_repo
git clone https://github.com/NVIDIA/cuda-samples.git
cd /test_repo/cuda-samples/Samples/2_Concepts_and_Techniques/eigenvalues/
make

%runscript
#Executes when the "apptainer run" command is used
#Useful when you want the container to run as an executable
cd /test_repo/cuda-samples/Samples/2_Concepts_and_Techniques/eigenvalues/
./eigenvalues

%help
This is a demo container to show how to build and run a CUDA application
on a GPU node

This will create a container with the compiled eigenvalues example inside, which makes use of an Nvidia GPU to calculate the eigenvalues of a 2048 x 2048 matrix.

This container has already been distributed on CVMFS and can be found at /cvmfs/softdrive.nl/lodewijkn/cuda_example_unpacked.sif.

To run this container on the Grid, making use of the GPUs, the following jdl has to be submitted to DIRAC, or the workload management system (WMS) of your choice. This jdl runs a shellscript on the CE, calling the container on CVMFS. This script, called gpu_job.sh is given as:

#!/bin/bash

cat /proc/self/status | grep 'Cpus_allowed_list:'
echo
/usr/bin/nvidia-smi

pwd
hostname

/cvmfs/oasis.opensciencegrid.org/mis/apptainer/bin/apptainer run --nv /cvmfs/softdrive.nl/lodewijkn/cuda_example_unpacked.sif

In the command that calls apptainer the --nv flag is necessary to expose the GPU to the container. The gpu_job.sh script is then passed along inwith the jdl to the Grid when submitting the job. The jdl, called gpu_job.jdl, is given next:

[
 JobName = "my_gpu_job";
 Executable = "gpu_job.sh";
 StdOutput = "StdOut";
 StdError = "StdErr";
 InputSandbox = {"gpu_job.sh"};
 OutputSandbox = {"StdOut","StdErr"};
 Site = "GRID.SURF.nl";
 Tags = {"gpu"};
 CPUTime = 600;
]

To submit the job, ensure all the necessary files are available: the gpu_job.sh script and gpu_job.jdl jdl file. Then submit the job with:

$dirac-wms-job-submit gpu_job.jdl

After the job has run succesfully, the stdout output looks like:

Cpus_allowed_list: 11-21

Thu Dec 8 14:57:12 2022
+---+
| NVIDIA-SMI 515.65.01 Driver Version: 515.65.01 CUDA Version: 11.7 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+======================		
0 NVIDIA A10 Off	00000000:00:07.0 Off	0
0% 42C P0 57W / 150W	0MiB / 23028MiB	3% Default
		N/A
+-------------------------------+----------------------+----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| No running processes found |
+---+
/tmp/ZTiMDmYBVN2nCifV3nVLvLKmABFKDmABFKDmURGKDmABFKDm5i8MKo/DIRAC_hA3xkNpilot/20
wn-a10-04.gina.surfsara.nl
Starting eigenvalues
GPU Device 0: "Ampere" with compute capability 8.6

Matrix size: 2048 x 2048
Precision: 0.000010
Iterations to be timed: 100
Result filename: 'eigenvalues.dat'
Gerschgorin interval: -2.894310 / 2.923303
Average time step 1: 0.987820 ms
Average time step 2, one intervals: 1.169709 ms
Average time step 2, mult intervals: 2.616700 ms
Average time TOTAL: 4.785920 ms
Test Succeeded!

And you have run your first GPU job on the Grid!

Downtimes and maintenances

Here you will find details to keep informed for the ongoing and upcoming downtimes and maintenances in our Grid systems:

Contents

	Downtimes and maintenances

	Ongoing maintenances

	Upcoming maintenances

Ongoing maintenances

You can lookup announcements for the current status of the Grid systems, including all ongoing downtimes and maintenances on our website [https://servicedesk.surf.nl/wiki/display/WIKI/Service+status/] under:

Systems > System status > National e-Infrastructure Grid Maintenances

Direct link: https://ganglia.grid.surfsara.nl/cgi-bin/eInfra.py

Upcoming maintenances

If you use want to receive notifications and be prepared for upcoming downtimes and maintenances, you can create personal subscriptions to receive announcements tailored specifically for the Grid services and clusters that are relevant for you.

	Login to the portal here: https://operations-portal.egi.eu/ (click on EGI button)

	Select your academic or social account and login

	If your academic or social account _does not work_ go to ‘EGI SSO’ for and select ‘forgot password’ to create a new account

	
	The first time you login you will be asked to “Sign Up EGI user community”
	
	Click and review the terms & conditions. Once you agree you will receive an email. Click on the link to verify address

	Accept the invitation and verify again

	You should have now logged in successfully to the portal

	Click on Downtimes Link button and then on the top right “SUBSCRIPTION”. Add your email as Subscriber

	
	Create the following rule to receive notifications
	
	Rule: I WANT

	Region: NGI_NL

	Site: SARA-MATRIX

	Node: All nodes

	VO: All VOs

	Comm. channels: click on ‘Add comm’. Then ‘+Add new’ -> Type: Email(HTML), Value: put your email address and click ‘Enter’ in the same field box -> click ‘Close’

	Click on Save rules specifications to take effect. From now on you should receive notifications when the Gina cluster or SURFsara dCache has a downtime

NOTE: for dCache only select webdav and srm only notifications.

If you need help creating your subscription(s) we are of course willing to assist at helpdesk@surfsara.nl.

Statistics and monitoring

In this section you will find information about the Grid systems status and usage statistics:

Contents

	Statistics and monitoring

	SURFsara systems

	NIKHEF facility

	EGI accounting and operations portals

SURFsara systems

The webpage below contains monitoring information about the usage of various systems at SURFsara:

	SURFsara systems usage [https://ganglia.surfsara.nl/]

More specific monitoring information about the Grid jobs usage can be found in the following website:

	SURFsara Grid systems [https://jobsview.grid.surfsara.nl/grafana]

NIKHEF facility

The webpage below contains Nikhef facility statistics and status overview:

	Statistics NIKHEF facility [https://www.nikhef.nl/grid/stats/]

EGI accounting and operations portals

The portal below provides information about accounting statistics for sites, regions, VOs:

	EGI Accounting portal [http://accounting.egi.eu/egi.php]

The following site provides Grid sites info updated by participating NGIs:

	GOCDB NGIs info [https://goc.egi.eu/portal/]

MOOC - Introduction to Grid Computing

This page includes the complete course material as presented during the SURFsara MOOC Introduction to Grid Computing:

Contents

	MOOC - Introduction to Grid Computing

	About

	Lectures

	Use cases

	Animations

	EGI-InSPIRE

About

As of 18 November 2013, SURFsara offered the Massive Open Online Course (MOOC) Introduction to Grid Computing. The course aimed to help researchers to understand the Grid key concepts and the role of Grid Computing in computationally intensive problems. This included working with portals, workflow management systems and the Grid middleware.

The taught material consists of:

	a set of video lectures.

	a set of quizzes, assignments and exercises.

	real world examples of use cases on Grid.

Note

The mooc participants were provided with student accounts and a preconfigured Virtual Machine (VM) with all the necessary Grid tools installed. If you want to run the examples presented in the video lectures below you will have to request your personal Grid account, see Prerequisites. Please contact helpdesk@surfsara.nl if you need help with this.

Lectures

The entire course video lectures can be found in the MOOC Video lectures [https://www.youtube.com/playlist?list=PLxLmEiwjudnxsettwXEj8SeU--sTsoqvz].

Course Overview

Course Overview slides pdf

Introduction to Parallel and Distributed Computing

Intro to Parallel and Distributed Computing pdf

Cluster Computing

Cluster Computing pdf

Grid Computing Overview

Grid Computing Overview pdf

Grid_Glossary

Grid Glossary pdf

Hands-on set

Exercises Distributed Cluster Grid pdf

Quiz Distributed Cluster Grid pdf

Working Environment - Grid prerequisites

Working Environment_I Grid prerequisites pdf

Working Environment - Remote access

Working Environment II Remote access pdf

Code gridpi tar

Grid Certificate - Security

Grid Certificate I (security) pdf

Grid Certificate I (extras) pdf

Obtain a Grid Certificate

Sectigo: new way to request a certificate!

Note

Sectigo allows you to get your Grid certificate instantly from the GEANT Trusted Certificate Service (instead of Terena portal), by using your institutional login and SURFconext. Read the User Guide [https://ca.dutchgrid.nl/tcs/TCS-enduser-request-guide-NL-2020-04.pdf] or login directly on the Sectigo portal [https://cert-manager.com/customer/surfnet/idp/clientgeant].

Grid Certificate II (Obtaining a certificate) pdf

User Interface machine

User Interface machine pdf

Virtual Organisations

Virtual Organisations pdf

Hands-on set

Exercises Install Certificate pdf

Quiz_Install Certificate pdf

Grid job Lifecycle

Grid job Lifecycle pdf

Start a Grid_Session

Start a Grid Session pdf

My First Grid job

My First Grid job pdf

Code MyFirstJob tar

Grid Toolkit

Grid Toolkit pdf

Hands-on set

Quick start guide pdf

Exercises First Grid job pdf

Quiz_First Grid job pdf

Application_submission to Grid I

Application submission to Grid I script pdf

Code script tar

Application_submission to Grid II

Application submission to Grid II executable pdf

Code compiled tar

Advanced Grid jobs I

Advanced Grid jobs I Collections & Parametric pdf

Code Collections Parametric tar

Advanced Grid jobs II

Advanced Grid jobs II Multicore pdf

Code multicore tar

Data parallel processing Hadoop

Data parallel processing Hadoop pdf

Hands-on set

Exercises Advanced Jobs pdf

Quiz Advanced Jobs pdf

lcg/lfc/lfn? Only for large files with multiple replicas.

The lectures Data Management on the Grid [1-3] present the lcg/lfc/lfn Storage clients. However, we advise you to better use the globus client or srm client tools, unless you need to run jobs on multiple sites which require access on the same large dataset (or database). In case of doubts, contact us at helpdesk@surfsara.nl.

Data Management on the Grid I

Data Management on the Grid I pdf

Data Management on the Grid II

Data Management on the Grid II pdf

Data Management on the Grid III

Data Management on the Grid III pdf

Code DMlargefiles tar

Storage Resource Manager

Storage Resource manager pdf

Code DMsrm tar

Hands-on set

Exercises_Data Management pdf

Quiz_Data Management pdf

Introduction to Workflows I

Introduction to Workflows I pdf

Introduction to Workflows II

Introduction to Workflows II pdf

WS-Pgrade I

WSpgrade I pdf

WS-Pgrade II

WSpgrade II pdf

Science Gateways

Science Gateways pdf

Hands-on set

Exercises Workflows pdf

Code Exercises Workflows tar

Code Solutions Workflows tar

Quiz Workflows pdf

Pilot Job Frameworks

Pilot job frameworks pdf

Picas Server side I

Picas server side I pdf

Picas Server side II

Picas server side II pdf

Picas client side

Picas client side pdf

Picas practise I

Code Picas tar

Picas practise II

Code Picas tar

Course Summary

Course summary pdf

Use cases

Use case: EGI overview

EGI overview pdf

Use case: LOFAR

Extreme physics in space pdf

Use case: Climate change over Europe

Climate change pdf

Use case: VisIVO Science Gateway

VisIVO Science Gateway pdf

Use case: Picas

Picas pdf

Use case: Molecular Biology

Molecular Biology pdf

Animations

We have prepared a set of animations to display the basic usage of Grid Infrastructure. The animations were presented
during the lectures.

EGI-InSPIRE

The work is supported by the EGI-InSPIRE project (Integrated Sustainable Pan-European Infrastructure for Researchers in Europe), co-funded by the European Commission (contract number: RI-261323) for four years from the 1st of May 2010. EGI-InSPIRE is a collaborative effort involving more than 50 institutions in over 40 countries. Its mission is to establish a sustainable European Grid Infrastructure (EGI).

Frequently asked questions

Check out in this page the most commonly asked questions about Grid. If you still have questions, please contact us at helpdesk@surfsara.nl:

Contents

	Frequently asked questions

	Getting started

	I never worked with the Grid before. Where is a good starting point?

	Where can I lookup up Grid terms?

	Certificates

	How can I change my Grid certificate password?

	Unable to load certificate error

	What are the correct permissions for my certificate files?

	Couldn’t find valid credentials error

	Get non-vomsified proxy locally

	How can I renew my certificate?

	Does my key match the certificate?

	What is the expiry date of my certificate?

	What is the expiry date of my VO membership?

	How can I see the subject of my certificate?

	Using resources

	How many cpu’s, nodes does the Grid offer?

	How many cpu hours are available?

	What is the average amount of memory available per node?

	What is the data transfer speed between Grid locations?

	How can I calculate the total CPU time I consumed?

	System usage and CPU efficiency

	How can I find all the available Storage Elements and get their SURLS?

	How can I find all the available Compute Elements and use in my JDL?

	How to run PBS jobs with wallclock greater than 36 hours on local clusters?

	How to use the Grid worker node /scratch on Gina?

Getting started

I never worked with the Grid before. Where is a good starting point?

New users are advised to read through our tutorial page, the Prerequisites and First Grid job which guides you through the whole process from getting a Grid certificate to the actual job run. The Grid team at SURFsara is willing to assist, just contact helpdesk@surfsara.nl.

Where can I lookup up Grid terms?

Check out the file Grid Glossary pdf that contains most of the basic Grid terminology and abbreviations.

Certificates

How can I change my Grid certificate password?

Before you create a new private key file with a new password, we recommend you to make a backup of the old userkey.pem file.

To change your Grid certificate password, type:

$openssl rsa -in ~/.globus/userkey.pem -des3 -out ~/.globus/new_private_key_file
$mv ~/.globus/new_private_key_file ~/.globus/userkey.pem # this will replace your old key file with the old password!

Note: this only changes the password you use for your certificate. If you think your certificate is compromised, you HAVE to revoke your certificate!

Unable to load certificate error

If you get the following error:

unable to load certificate 17714:error:0906D064:PEM routines:PEM_read_bio:bad base64
decode:pem_lib.c:781:

when you use the command openssl x509 -text -noout -in usercert.pem, it means that the email with the certificate wasn’t saved properly as plain text (it included the Mime type for formatting). Repeat carefully the steps as described in Retrieve your DutchGrid certificate section.

What are the correct permissions for my certificate files?

	Set the proper permissions to your certificate files:

$chmod 644 usercert.pem
$chmod 400 userkey.pem

	Verify the correct permissions:

$cd $HOME/.globus
$ls -l

-rw-r--r-- 1 homer homer 4499 May 10 13:47 usercert.pem
-r-------- 1 homer homer 963 May 10 13:43 userkey.pem

Note that the private key file should be read-only and only readable to you.

Couldn’t find valid credentials error

If you get the following error when creating a new proxy:

ERROR: Couldn't find valid credentials to generate a proxy.
Use --debug for further information.

The permissions on your installed certificate are probably wrong. Set the correct permissions and try creating a proxy again.

Get non-vomsified proxy locally

	To download locally the proxy stored on MyProxy server you need to set a passphrase upon creation. To do this, protect your proxy with a MyProxy pass phrase by omitting option “-n”:

$myproxy-init -d

It will first ask your Grid certificate password and then prompt you to enter a MyProxy
passphrase twice. You will use the latter passphrase to download your proxy.

Here is an example of the displayed output:

Your identity: /O=dutchgrid/O=users/O=sara/CN=Homer Simpson
Enter GRID pass phrase for this identity:
Creating proxy Done
Proxy Verify OK
Your proxy is valid until: Wed Jan 13 14:35:00 2016
Enter MyProxy pass phrase:
Verifying - Enter MyProxy pass phrase:
A proxy valid for 168 hours (7.0 days) for user /O=dutchgrid/O=users/O=sara/CN=Homer Simpson now exists on px.grid.sara.nl.

	Now use the MyProxy pass phrase to get this proxy locally on the UI:

$myproxy-get-delegation -d

Here is an example of the displayed output:

Enter MyProxy pass phrase:
A credential has been received for user /O=dutchgrid/O=users/O=sara/CN=Homer Simpson in /tmp/x509up_u39111.

Note that the downloaded proxy will not include the voms attributes.

How can I renew my certificate?

The personal Grid certificates are valid for a year. This means that every year you need to renew your personal Grid certificate. The procedure for renewing your certificate depends on your CA, either Sectigo or DutchGrid.

	For Sectigo Grid certificate, you can request a new certificate anytime from the Sectigo portal [https://cert-manager.com/customer/surfnet/idp/clientgeant]. Follow this guide to obtain and install a Sectigo Grid certificate.

	For DutchGrid Grid certificate, you have two options:

	When your certificate has already expired, you have to request a new certificate from scratch with the jGridstart tool. Follow this guide to obtain a DutchGrid certificate.

	If your current certificate has not expired yet, you can renew your certificate. This is a faster procedure because you avoid revisiting your RA for your id verification. What you need to do:

	Log in to the UI with X session enabled.

	Start the jGridstart tool on the UI (assuming that your current certificate is installed there): java -jar jgridstart-wrapper-XX.jar

	Select Actions -> Renew from the menu bar.

	Generate a new request by verifying your details (name, surname, email, organisation). At this stage you will provide a new password for your new Grid certificate - make sure you keep this safe! Click “Next”.

	Submit the request. This will create a new private userkey.pem file in your ~/.globus directory. Click “Next”.

	You will receive your new certificate within few days via email. Once received, follow the instructions to install it on the UI.

Keep in mind that when you renew your certificate the certificate key will change too. To avoid mixing up the old and new certificate files, check whether your new certificate and key match each other.

Does my key match the certificate?

Using the modulus you can see whether a key and a certificate match. The modulus is a short message which can be used to identify a private key and the key which was signed with the certificate. If they match, the certificate signs that private key. If not, you may have mixed up different key or certificate files.

To find the modulus of your key, use:

$openssl rsa -in userkey.pem -noout -modulus

which requires the key which you used to protect your key file.
To find the modulus of your certificate, use:

$openssl x509 -in usercert.pem -noout -modulus

If the moduli of the key file and the certificate file do not match, you
cannot use that combination to identify yourself.

What is the expiry date of my certificate?

To find out when your certificate is valid, use:

$openssl x509 -in usercert.pem -noout -dates

This will tell you when your certificate is valid.

Note that a key does not have a validity period.

What is the expiry date of my VO membership?

Your VO membership needs to be renewed every year, which includes signing of the (possibly updated) Acceptable Use Policy for the VO.

Please take care to renew your membership within a month after expiry This prevents you from having to rejoin the VO, as all expired memberships will be automatically removed by the system after a month.

How can I see the subject of my certificate?

The subject of a certificate is the human-readable identification of who the certificate belongs to. It usually contains your name, country, organisation and your e-mail address.

To find out who the certificate belongs to, use:

$openssl x509 -in usercert.pem -noout -subject

Using resources

How many cpu’s, nodes does the Grid offer?

The Grid infrastructure is interconnected clusters in Netherlands and abroad. The users can get access to multiple of these clusters based on their Virtual Organisation.

	Global picture: 170 datacenters in 36 countries: in total more than 330000 compute cores, 500 PB disk, 500 PB tape.

	In the Netherlands NGI_NL infrastructure: 14 datacenters (3 large Grid clusters, 11 smaller ones): in total approximately 10000 compute cores, 12 PB disk, tape capacity up to 170 PB.

How many cpu hours are available?

The available core hours and storage depend on the funding models. We make tailored agreements to incorporate the user requirements and grant resources based on the applicable funding scheme.

What is the average amount of memory available per node?

The average memory per node depends on number of cores per node. It is typically 8GB per core, but the nodes vary between 12 and 64 cores per node (48 to 256GB RAM per node).

What is the data transfer speed between Grid locations?

In the Netherlands NGI_NL infrastructure the transfer speed between Grid storage and Grid processing cluster (at SURFsara) is up to 500Gbit/s. The transfer speed between nodes is 10Gbit/s and between sites it is typically 10 to 20 Gbit/s.

How can I calculate the total CPU time I consumed?

The total CPU time depends on the amount of cores that your application is using and the wallclock time that the corresponding job takes to finish:

CPU time = #cores x wallclock(per job) x #jobs

For example, let’s say that a single job takes 12 h to finish on a 4-core machine and we submitted 10,000 of those. The total CPU time spent is:

CPU time = 4cores x 12h x 10,000 = 480,000 CPU hours ~ 55 CPU years

System usage and CPU efficiency

CPU efficiency is an important factor to detect if the jobs run smoothly on the infrastructure. The CPU efficiency depends on the real CPU usage and the WallClock time for the job to finish:

CPU efficiency = CPU time / WallClock time

If the CPU was efficiently being used during the job runtime, then a single core job will have efficiency close to 100%. For multicore jobs the efficiency is higher than 100%.

How can I find all the available Storage Elements and get their SURLS?

	To find out the available SEs for a certain VO, type:

$lcg-infosites --vo lsgrid se

How can I find all the available Compute Elements and use in my JDL?

	To find out the available CEs for a certain VO, type:

$lcg-infosites --vo lsgrid ce

Note here that the Total, Running and Waiting numbers are per queue, and the CPU and Free number are per cluster.

	To specify a specific cluster in your JDL file, use the following syntax:

Requirements = (RegExp("rug",other.GlueCEUniqueID)); # this requires the job to land on the "rug" site

or you can specify the full UI hostname
Requirements = RegExp("gb-ce-lumc.lumc.nl",other.GlueCEUniqueID); # job lands at lumc

How to run PBS jobs with wallclock greater than 36 hours on local clusters?

In order to run PBS jobs that last more than 36 hours, you need to select the proper queue with the -q flag in your qsub command when submitting the job:

	If you do not use -q flag and lwalltime directive, then the medium queue is picked and jobs lasting more than 36 hours will be killed.

	If you do not use -q flag but specify -lwalltime directive with value larger than 36 hours, then you request more walltime than the max walltime available in the default medium queue and the job does not start at all.

	If you use the -q flag, it is sufficient to get your jobs running for the amount of hours that the specified queue permits.

How to use the Grid worker node /scratch on Gina?

You should not write data directly under the worker node /scratch, but use your job directory instead. See the instuctions here to make efficient use of the local storage on the Grid worker nodes.

Troubleshooting

Contents

	Troubleshooting

	General troubleshooting steps

	How can I get more logging info for my job?

	File transfers are stuck

General troubleshooting steps

Don’t hesitate to contact us when things go wrong! We’re happy to help you overcome the difficulties that every Grid user faces.

In order to assist you better, we have a few troubleshooting steps that may already get you going and otherwise may help us to help you.

	Check the output of voms-proxy-info -all. Is your proxy still valid? Does it have the correct attributes for the work you’re doing?

	Try running your command with higher debugging level or verbosity.

$glite-wms-job-submit --debug ...
$srmcp -debug ...
$gfal-copy --verbose ...
$globus-url-copy -debugftp -verbose-perf -verbose ...
$curl --verbose ...

	Is the resource you’re using in downtime?

	Can you connect to the service?

A basic firewall check: can you connect to the port?
$telnet srm.grid.sara.nl 8443

Testing the SSL layer of a connection to the dCache SRM door
$echo 'QUIT' | openssl s_client -connect srm.grid.sara.nl:8443 \
 -CApath /etc/grid-security/certificates
One of the last lines should be: 'Verify return code: 0 (ok)'

Testing a gridFTP door, control channel
$telnet rabbit1.grid.sara.nl 2811

GridFTP data channels are more difficult to test, because the port opens only after a transfer is initiated.
But after we start an iperf service, you can try to telnet to it.
$telnet rabbit1.grid.sara.nl 24000

Or just test with iperf:
$iperf3 -c rabbit1.grid.sara.nl -p 24000
$iperf3 -c rabbit1.grid.sara.nl -p 24000 --reverse
Keep in mind that we have to start iperf first!

How can I get more logging info for my job?

To find out more info about the status of your job, use:

$glite-wms-job-logging-info -v 2 https://wms2.grid.sara.nl:9000/PHyeyedC1EYBjP9l_Xq9mQ # replace with your job URL

And if you use a file to store your jobs, run:

$glite-wms-job-logging-info -v 2 -i jobIds # replace jobIds with your file

File transfers are stuck

Occasionally, transfers are stuck when 0 bytes have been transferred. There are some common causes for stalled transfers.

	A firewall blocks the ports for the data channel. If you use srmcp, specify --server_mode=passive. If that doesn’t help, check whether your firewall allows outgoing traffic to ports 20000 to 25000 (GridFTP data channel range).

	You’ve reached the maximum number of transfers for the storage pools that have been allocated to you. All transfers beyond the maximum will be queued, until previous transfers finish to make ‘transfer slots’ available, or until they time out. Besides the failing transfers, there is another downside: some of your jobs might be wasting CPU time while they wait for input files. This is not efficient. It’s better to reduce the number of concurrent transfers so that you don’t reach the maximum, or ask us whether the maximum can be increased.

You can see whether this happens at these graphs [http://web.grid.sara.nl/dcache.php?r=hour#transfers]. A red color (‘Movers queued’) means that there are stalling transfers.

	You’re transferring files from/to outside SURFsara, and your endpoint support a MTU (network packet) size of 9000, but the network path doesn’t. Control traffic passes through because it consists of small packets. But data traffic consists of large packets and these are blocked. The image below illustrates this:

[image: ../_images/Black_hole_connection.png]
Some tools to test this:

Run this from your endpoint of the transfer; adjust the value to find the limit.
Check first whether your system supports a MTU of 9000.
ping -M do -s 8972 gridftp.grid.sara.nl

This command tells you what the supported MTU value is.
tracepath gridftp.grid.sara.nl

Another good tool for testing the network is iperf. We’ll start an iperf server at your request so that you can test against it.

Using iperf3 to test upload speed
iperf3 -c rabbit1.grid.sara.nl --port 24000 --parallel 4

Same but for download speed
iperf3 -c rabbit1.grid.sara.nl --port 24000 --parallel 4 --reverse

Using the older iperf to test upload and download speed simultaneously, with 4 streams
iperf -c rabbit1.grid.sara.nl --port 24001 --parallel 4 --dualtest

A fix for Linux servers is to enable tcp_mtu_probing in sysctl.conf. This enables the Linux kernel to select the best MTU value for a certain network route.

Documentation how-to

Tip

Do you have ideas for corrections and improvements of our user documentation? In this page you will learn how to:

	contribute to our documentation

	edit the docs with Sphinx language

	build the docs on your laptop

Our documentation is hosted on Github and is written in Sphinx [http://www.sphinx-doc.org] restructured text.
Behind the scenes we use ReadTheDocs [https://readthedocs.org/] to publish it automatically. You can contribute
either directly to our Grid Github repo [https://github.com/sara-nl/griddocs] or send an email to
our helpdesk with your remarks and we will change the documentation
ourselves. Any contribution is welcome!

The rest of this page explains how to to submit your changes directly through Github.

Contribute through GitHub

In case that you have a GitHub account and a little knowledge of git (see
GitHub’s git cheat sheet [https://help.github.com/articles/git-cheatsheet/]),
you can try submitting your changes directly to our repository. Here is what you
have to do:

	Fork [https://help.github.com/articles/fork-a-repo/] our Grid Github repo [https://github.com/sara-nl/griddocs]

	Git pull your fork

	Edit with Sphinx language the files with your changes

	Build the documentation locally to preview the changes

	Commit and push your changes back to your fork

	Create a pull request [https://help.github.com/en/articles/creating-a-pull-request-from-a-fork] to inform us of your changes

	After we’ve reviewed and accepted your work, we will merge your commits and the documentation will be updated automatically

Edit with Sphinx language

When you contribute directly to our Github repo we ask you to write the changes
in Sphinx language. The philosophy of Sphinx documentation is that content is
stored in files that can be easily read and edited by humans, in a format called
restructured text, with the file extension .rst. Using a simple grammar,
text can be styled. The document is structured using special tags; using these
tags, documentation can be split into multiple files, and you can cross-reference
between files and build indexes.

Although Sphinx is quite intuitive, we have created a simple Sphinx cheatsheet
to help you use the Sphinx syntax:

	Sphinx cheatsheet

Build the documentation locally

Because the syntax of the files is human readable, you can edit the files using
your favourite text editor. Once you are done editing, you can generate
documentation in various formats, such as HTML or epub. While you can edit the
pages on virtually any system, it is recommended to preview your changes before
publishing them.

There are different ways to generate the HTML documentation from source and
review your changes:

	Docker image

	Sphinx local installation

	GitHub edit/preview

Note that you only need to use one of the options mentioned above. Using Docker
is the preferred way, as this mimics the ReadTheDocs build system closest.
GitHub edit/preview on the other hand is good enough for minor, textual changes,
but is otherwise the least preferred option.

Below you will find information for each of the methods.

Docker image

This is the preferred option to build and test your changes. It tries to build
the documentation the same way as readthedocs.org.

	Install Docker image

	Once the Docker image is ready, find the following script inside your Github fork and run it to build your documentation. Provide an output location (default: ./build) and the Docker image name (default: readthedocs/build):

./build.sh

Optionally you can provide an output location (default: ./build) and the Docker
image name (default: readthedocs/build):

./build.sh /alternative/output/path/ docker_image_alternative_name

Example:

./build.sh mybuild readthedocs/build:latest

Note

For Mac OS X, use ./build_mac.sh instead.

Sphinx local installation

For the Sphinx documentation setup locally you will need to:

	Install Sphinx sphinx_install

	To generate HTML documentation, use the command:

make html

which will generate static pages in the build-directory as long as you have the software Sphinx installed locally.

Github edit/preview

For small changes you can edit a page directly from your GitHub fork webview.
The preview button does not give a fully compatible rst overview, but is
sufficient for textual changes.

Cookiebeleid

Wat is een cookie?

Wij maken op deze website gebruik van cookies. Een cookie is een eenvoudig klein bestandje dat met pagina’s van deze website wordt meegestuurd en door uw browser op uw harde schrijf van uw computer wordt opgeslagen. De daarin opgeslagen informatie kan bij een volgend bezoek weer naar onze servers teruggestuurd worden.

Google Analytics

Via onze website wordt een cookie geplaatst van het Amerikaanse bedrijf Google, als deel van de “Analytics”-dienst. Wij gebruiken deze dienst om bij te houden en rapportages te krijgen over hoe bezoekers de website gebruiken. Google kan deze informatie aan derden verschaffen indien Google hiertoe wettelijk wordt verplicht, of voor zover derden de informatie namens Google verwerken. Wij hebben hier geen invloed op. Wij hebben Google niet toegestaan de verkregen analytics informatie te gebruiken voor andere Google diensten. De informatie die Google verzamelt wordt zo veel mogelijk geanonimiseerd. Uw IP-adres wordt nadrukkelijk niet meegegeven. De informatie wordt overgebracht naar en door Google opgeslagen op servers in de Verenigde Staten. Google stelt zich te houden aan de Safe Harbor principes en is aangesloten bij het Safe Harbor-programma van het Amerikaanse Ministerie van Handel. Dit houdt in dat er sprake is van een passend beschermingsniveau voor de verwerking van eventuele persoonsgegevens.

In- en uitschakelen van cookies en verwijdering daarvan

Meer informatie omtrent het in- en uitschakelen en het verwijderen van cookies kan je vinden in de instructies en/of met behulp van de Help-functie van jouw browser.

Meer informatie over cookies?

Op de volgende websites kan je meer informatie over cookies vinden:

	Cookierecht.nl [http://www.cookierecht.nl/]

	Consumentenbond: “Wat zijn cookies?” [http://www.consumentenbond.nl/test/elektronica-communicatie/veilig-online/privacy-op-internet/extra/wat-zijn-cookies/]

	Consumentenbond: “Waarvoor dienen cookies?” [http://www.consumentenbond.nl/test/elektronica-communicatie/veilig-online/privacy-op-internet/extra/waarvoor-dienen-cookies/]

	Consumentenbond: “Cookies verwijderen” [http://www.consumentenbond.nl/test/elektronica-communicatie/veilig-online/privacy-op-internet/extra/cookies-verwijderen/]

	Consumentenbond: “Cookies uitschakelen” [http://www.consumentenbond.nl/test/elektronica-communicatie/veilig-online/privacy-op-internet/extra/cookies-uitschakelen/]

	Your Online Choices: “A guide to online behavioural advertising” [http://www.youronlinechoices.eu/]

Index

New code-block syntax

Code-block bash

Comment
 # Indented comment
$test emphasize-lines
$echo "Hallo Wereld!" $VAR \
 | grep .
Hallo Wereld!

Code-block console

#Comment
 # Indented comment
$test emphasize-lines
$echo "Hallo Wereld!" $VAR \
$| grep .
Hallo Wereld!

Code-block shell-session

Comment
 # Indented comment
$test emphasize-lines
$echo "Hallo Wereld!" $VAR \
 | grep .
Hallo Wereld!

Code-block python console

Don’t mind the syntax.

Comment
 # Indented comment
$test emphasize-lines
$echo "Hallo Wereld!" $VAR \
 | grep .
Hallo Wereld!
>>> echo "Hallo Wereld!" \
 | grep .
Hallo Wereld!

Grid authentication

This section explains the concepts and operations regarding Grid authentication mechanisms:

Contents

	Grid authentication

	Introduction: delegation of authentication

	Starting a Grid session

	Using VOMS proxies

	Creating a VOMS proxy

	Inspecting your proxy certificate

	Using the MyProxy server

	Inspecting the myproxy certificate

	Credential delegation

	Authentication for Dirac job submission

	Commands for viewing your proxy information

Introduction: delegation of authentication

Grid, by its very nature, is decentralised. This means that users must
authenticate themselves to the Grid services they want to use. This is accomplished
by means of a personal certificate and accompanying private key that
every Grid user must have. The combination of a certificate and private key
uniquely identifies a user. Therefore, you should never share
your private key with anyone else or with any service. At the same time
your jobs will typically run on systems you may not trust. However,
to be able to use those systems you must identify yourself with those systems.
This is where delegation comes in: identifying yourself with a system you don’t trust
by creating a new certificate/private key pair, called a proxy, with a limited
validity. This chapter describes how you can delegate your credentials.

The easiest way is to use a Grid session, which does everything for you in
one go.

Starting a Grid session

The easiest way to start a session on the Grid is to use the startGridSession <VO Name> command (see also here) on a user interface (UI) machine.

More about creating proxies?

See also

For more detailed information about the proxies, have a look at our mooc video Start a Grid_Session.

The startGridSession command:

	generates a local proxy of your certificate and private key;

	delegates this local proxy to the Myproxy server;

	delegates this local proxy to the WMS with your user name as the delegation ID (DID).

Your jobs will now be able to run for a week. The WMS that is responsible for
scheduling your jobs, will renew the proxy certificate of running
jobs every 12 hours automatically, for one week. This means that your
jobs must finish within a week from starting the Grid session . However,
running the command again will extend your jobs with a week of run time.

Note

Every time you submit the startGridSession command it renews your Grid session for an additional week.

Instead of startGridSession, you can run the following three commands separately with the same results:

1. VOMS server: create a voms proxy with voms extensions that enables you to access the Grid for *12 hours*.
voms-proxy-init --voms lsgrid #replace lsgrid with your VO

2. MyProxy server: store a *week* long proxy certificate in the Myproxy server; useful for jobs that are
running for more than 12 hours.
myproxy-init -d -n

3. WMS: delegate your credentials to the Workload Management System.
glite-wms-job-delegate-proxy -d $USER

The next section explains the startGridSession operations step-by-step. See also startGridSession -h.

Using VOMS proxies

In order to use the Grid facilities, you have to create a proxy. A proxy is a
short-lived certificate/private key combination which is used to
perform actions on the Grid on your behalf without using passwords. You
can read more in this paper [http://toolkit.globus.org/alliance/publications/papers/pki04-welch-proxy-cert-final.pdf] from Globus Alliance Members.
Proxies contain both a certificate and private key and, therefore, should never leave the system. Instead, proxies are
delegated to other systems: a new proxy is created on a remote system using the local proxy as authentication.
Services that have been provided with a delegation of your proxy can act on your behalf. The proxy
file on the UI is owned by you and placed in the /tmp directory. You only deal
with this file directly in exceptional cases.

Creating a VOMS proxy

Make sure you have installed your certificate and private on the Grid user interface that you are working on.
They should be placed in the .globus directory under your home directory and should be named usercert.pem
and userkey.pem. They must have the following ownerships and permissions:

$ls -l $HOME/.globus/usercert.pem
-rw-r--r-- 1 homer homer 1956 Nov 16 12:20 /home/homer/.globus/usercert.pem

$ls -l $HOME/.globus/userkey.pem
-r-------- 1 homer homer 1956 Nov 16 12:20 /home/homer/.globus/usercert.pem

where homer should be replaced with your username. You can check the documentation about how to get a valid Grid certificate
how to get a Grid certificate and instructions about how to convert a pkcs12 certificate to the above PEM format.

Now issue the following command to create a local proxy. The pass phrase you are asked for, is your Grid certificate password:

$voms-proxy-init --voms lsgrid

You will see the following output in your terminal:

Enter GRID pass phrase for this identity:
Contacting voms.grid.sara.nl:30018 [/O=dutchgrid/O=hosts/OU=sara.nl/CN=voms.grid.sara.nl] "lsgrid"...
Remote VOMS server contacted successfully.
Created proxy in /tmp/x509up_u39111.
Your proxy is valid until Thu Jan 05 02:07:29 CET 2016

This proxy is your “username” for the Grid. The last line in the example shows the expiration time of the proxy.

Non standard location

To store your local proxy in a non standard location, use the -out option:

$voms-proxy-init -voms lsgrid --valid 168:00 -out /home/homer/my_proxy_cert

See voms-proxy-init -h for more options.

Inspecting your proxy certificate

You can inspect your local proxy with the command:

$voms-proxy-info -all

Here is an example:

subject : /O=dutchgrid/O=users/O=sara/CN=Homer Simpson/CN=proxy
issuer : /O=dutchgrid/O=users/O=sara/CN=Homer Simpson
identity : /O=dutchgrid/O=users/O=sara/CN=Homer Simpson
type : full legacy globus proxy
strength : 1024
path : /tmp/x509up_u39111
timeleft : 11:48:24
key usage : Digital Signature, Key Encipherment, Data Encipherment
=== VO lsgrid extension information ===
VO : lsgrid
subject : /O=dutchgrid/O=users/O=sara/CN=Homer Simpson
issuer : /O=dutchgrid/O=hosts/OU=sara.nl/CN=voms.grid.sara.nl
attribute : /lsgrid/Role=NULL/Capability=NULL
attribute : /lsgrid/SARA/Role=NULL/Capability=NULL
timeleft : 11:48:24

You can see that a proxy certificate has a limited lifetime and is stored
in the /tmp directory. VO extension information is also shown and
is used to verify if you are indeed a member of this VO and group:
A Grid service that has been provided with a delegation of your proxy
can contact the VOMS service for membership information and subsequently
grant or deny you access.

Note

In the next step, you will delegate your proxy
certificate to the proxy server and there it will be valid by default for
a week. So it will be possible for long running jobs and jobs that
started running only after a few days to continue to run. However, the
proxy certificate that you use locally is only valid for 12 hours. So
remember that after 12 hours you have to create a new proxy certificate
to interact with the Grid (and your long running jobs).

Using the MyProxy server

The following command stores a proxy certificate in the proxy server
where it will issue new proxy certificates on your behalf for a week.
This is necessary for jobs that need more than 12 hours to run.

Issue this command on the UI:

$myproxy-init -d -n

You should get something like this:

Your identity: /O=dutchgrid/O=users/O=sara/CN=Homer Simpson
Enter GRID pass phrase for this identity:
Creating proxy ... Done
Proxy Verify OK
Your proxy is valid until: Wed Jan 13 14:25:06 2016
A proxy valid for 168 hours (7.0 days) for user /O=dutchgrid/O=users/O=sara/CN=Homer Simpson now exists on px.grid.sara.nl.

The delegated proxy can be received locally from other authorised Grid machines.

MyProxy tools rely on the environment variable MYPROXY_SERVER to determine the
MyProxy server to be used. This variable is set to px.grid.sara.nl for the SURFsara
Grid UI.

Inspecting the myproxy certificate

You can inspect the the myproxy certificate with the command:

$myproxy-info -d

Here is an example of the displayed output:

username: /O=dutchgrid/O=users/O=sara/CN=Homer Simpson
owner: /O=dutchgrid/O=users/O=sara/CN=Homer Simpson
timeleft: 167:56:36 (7.0 days)

Credential delegation

This section explains the usage of the command glite-wms-job-delegate-proxy, which is also executed when running the startGridSession.

When you submit a job to the Grid it will be sent to the Workload
Management System (WMS). This system will then schedule your job and send
it to a worker node somewhere on the Grid. The job will be run on your
behalf, therefore, you should delegate your credentials to the WMS Workload Management System.

Credential delegation solves the following problem: when the Grid is busy or when you submit a large number of jobs, it can take more then the standard 12 hours for the jobs to start than your local proxy certificate is valid. The solution is to use proxy delegation before submitting jobs.

We assume that you have issued the voms-proxy-init command and have a valid
local proxy. If not, please see voms-proxy-init command.

To delegate your proxy to the WMS, run on the UI:

$echo $USER
$glite-wms-job-delegate-proxy -d $USER # the $USER is the delegation id

The variable $USER is the delegation id (in this case your login name from the system). This string is needed in other commands to identify your session. In general, you can use any string you like after the -d option.

Instead of creating a delegation ID with -d, the -a option can be used.
This causes a delegated proxy to be established automatically. In this
case you do not need to remember a delegation identifier. However,
repeated use of this option is not recommended, since it delegates a new
proxy each time the commands are issued. Delegation is a time-consuming
operation, so it’s better to use the -d $USER when submitting a large
number of jobs one after the other.

Here is an example of the displayed output:

Connecting to the service https://wms2.grid.sara.nl:7443/glite_wms_wmproxy_server
================== glite-wms-job-delegate-proxy Success ==================

Your proxy has been successfully delegated to the WMProxy(s):
https://wms2.grid.sara.nl:7443/glite_wms_wmproxy_server
with the delegation identifier: homer

==

Authentication for Dirac job submission

When you wish to submit jobs with Dirac, a similar process is followed. The concepts discussed above about proxy creation, adding VO extension information and credential delegation are all also relevant here. Dirac has its own proxy server and these three steps are performed with a single command as described below:

$source /etc/dirac/pro/bashrc
$dirac-proxy-init -b 2048 -g pvier_user -M pvier --valid 168:00

For full details, you can refer to the Dirac proxy creation section.

Commands for viewing your proxy information

	To start your Grid session:

$startGridSession lsgrid # replace lsgrid with your VO

	To see how much time there is left on your Grid session:

$myproxy-info -d

	To renew your Grid session:

$startGridSession lsgrid #replace lsgrid with your VO

	To end your session:

$myproxy-destroy -d

	To remove your local /tmp/x509up_uXXX proxy:

$voms-proxy-destroy

	To review information of your local Dirac proxy:

$dirac-proxy-info

	To remove your local Dirac /tmp/x509up_uXXX proxy as well as from Dirac proxy server:

$dirac-proxy-destroy -a

Note

myproxy-destroy will not terminate any job. Jobs will continue
to run and will fail when the the proxy certificate that was used at the
time of submission, expires. Use glite-wms-job-cancel to cancel
running jobs.

Grid job requirements

By telling what your job needs, you help the scheduler in finding the
right place to run your jobs, and it also helps using the different
compute nodes in the Grid efficiently.

This chapter describes how to write the requirements, how the
requirements determine where your jobs will run, and what they tell the
scheduler.

Contents

	Grid job requirements

	Requirement syntax

	Requirements

	Specifying Wall Clock time

	Specifying the queue

	Selecting particular compute elements

	Multicore jobs

	Requesting a cluster with a minimum number of cores per node

Requirement syntax

Job requirements are written as an optional statement in the JDL file:

Requirements = <expression>;

Job requirements follow the JDL syntax. This also means that you can have multiple requirements using boolean operators && for
requirement 1 AND requirement 2, and || for requirement 1 OR
requirement 2. You can also use parentheses (...) for an even more
fine-grained control over requirements.

See also

For detailed information about JDL attributes supported by the gLite Workload Management System, have a look in the EGEE JDL guide [https://edms.cern.ch/ui/file/590869/1/WMS-JDL.pdf].

Requirements

Specifying Wall Clock time

Parameter: other.GlueCEPolicyMaxWallClockTime

Synopsis:

make sure that the job can run in a long queue of 72 hours (72 x 60 = 4320 minutes)
Requirements = other.GlueCEPolicyMaxWallClockTime >= 4320;

By specifying the wall clock time requirement, the scheduler picks a
queue which is long enough for running the job. The parameter is
other.GlueCEPolicyMaxWallClockTime, the value is in minutes. Make
sure that your requirement uses the ‘greater than or equal to’ syntax
(>=).

Specifying the queue

Parameter: other.GlueCEUniqueID

Synopsis:

make sure that the job will be submitted to the 'short' queue
Requirements=(RegExp("gina.sara.nl:8443/cream-pbs-short", other.GlueCEUniqueID));
make sure that the job will be submitted to the 'medium' queue
Requirements=(RegExp("gina.sara.nl:8443/cream-pbs-medium", other.GlueCEUniqueID));
make sure that the job will be submitted to the 'long' queue
Requirements=(RegExp("gina.sara.nl:8443/cream-pbs-long", other.GlueCEUniqueID));

Jobs in short queues tend to get a higher priority, jobs in long queues
tend to get a lower priority. You can use the queues guideline
for determining in which queue your job will run based on your VO. The supported queues and
their respective wall-time limits are the following:

	queue

	job length in minutes

	short

	240 (= 4 hours)

	medium

	2160 (= 36 hours)

	long

	5760 (= 96 hours)

Selecting particular compute elements

Parameter: other.GlueCEInfoHostName, other.GlueCEUniqueID

Synopsis:

Only run on the AMC cluster
Requirements = (
 other.GlueCEInfoHostName == "gb-ce-amc.amc.nl"
);

Run on the WUR or on the LUMC cluster
Requirements = (
 other.GlueCEInfoHostName == "gb-ce-amc.amc.nl" ||
 other.GlueCEInfoHostName == "gb-ce-lumc.lumc.nl"
);

Avoid one of SURFsara's Gina compute elements
Requirements = (other.GlueCEInfoHostName != "creamce2.gina.sara.nl");

Exclude a specific site, e.g. iihe.ac.be
Requirements=(!RegExp("iihe.ac.be", other.GlueCEUniqueID));

Schedule the jobs on a specific site, e.g. Gina
Requirements=(RegExp("gina", other.GlueCEUniqueID));

With the other.GlueCEInfoHostName criterion you can specify on which compute element your jobs will be scheduled. Or even on which CE your jobs will not be scheduled. This is convenient in cases where you know
jobs will fail on particular systems, for some reason.

other.GlueCEInfoHostName contains the hostname, while other.GlueCEUniqueID contains the full CE endpoint name including the queue. You can lookup these with the command lcg-infosites --vo lsgrid ce (see example). The last field is the GlueCEUniqueID.

Multicore jobs

Parameters: SmpGranularity, CPUNumber

Synopsis:

Request just 4 cores on a single node
SmpGranularity = 4;
CPUNumber = 4;

CPUNumber is the number of cores requested. SMPGranularity is the number of cores that must be scheduled on the same host.

Note that if you do not specify SmpGranularity the requested number of cores (CPUNumber) can be distributed over different nodes, which is only useful for MPI (or likewise) applications.

Warning

If you are running a multi-core process in your job, and
you do not set the correct number of CPU cores, you will
oversubscribe a compute node, slowing down your own analysis,
as well as others.

Requesting a cluster with a minimum number of cores per node

Parameter: other.GlueHostArchitectureSMPSize

Synopsis:

request a machine with at least 6 cpu cores on one node
Requirements = (other.GlueHostArchitectureSMPSize >= 6);

job uses 4 cores
CPUNumber = 4;
SMPGranularity = 4;

The default is to select a cluster with GlueHostArchitectureSMPSize >= SmpGranularity.
For efficient job allocation on a cluster it is often better to request a number of cores which is less
than the GlueHostArchitectureSMPSize (i.e. the number of cores per node).

Softdrive on your laptop

Using Softdrive is possible from various locations, such as the Grid, your local cluster, or your own computer. This page will show you how to use Softdrive from your own computer.

The instructions below have been tested in three different OS distributions:

	Mac OS Ventura 13.5

	Centos 6.8 Desktop

	Ubuntu 16.04 Desktop

The setup consists of the following basic steps:

Contents

	Softdrive on your laptop

	1. Installing CVMFS and necessary packages

	2. Configuring CVMFS

	3. Mounting Softdrive

You will need to run the installation commands as root.

1. Installing CVMFS and necessary packages

This step is different for the three tested OS:

Mac OS

	Install FUSE for macOS from: https://osxfuse.github.io/

e.g. https://github.com/osxfuse/osxfuse/releases/download/macfuse-4.5.0/macfuse-4.5.0.dmg

Warning

As of macOS 11 Big Sur, kernel extensions need to be enabled to install macFUSE:

	Open the Security & Privacy System Preferences pane, go to the General preferences and allow loading system software from developer “Benjamin Fleischer”

	Restart to allow for the system extension to be loaded

	Install the CernVM-FS package from: https://cernvm.cern.ch/portal/filesystem/downloads/

e.g. curl -o ~/Downloads/cvmfs-2.11.0.pkg https://ecsft.cern.ch/dist/cvmfs/cvmfs-2.11.0/cvmfs-2.11.0.pkg

Warning

As of macOS 10.15 “Catalina”, a reboot is required after the CernVM-FS package installation.

	Install a “personal” proxy server from: http://squidman.net/squidman/

e.g. http://squidman.net/resources/downloads/SquidMan4.2.dmg

	Check your own http proxy port and keep it for later steps. By default it is 8080.

Centos

	Install dependencies:

$ yum install attr autofs gawk gdb uuid uuid-dev

	Install CernVM-FS packages:

$ yum install https://ecsft.cern.ch/dist/cvmfs/cvmfs-release/cvmfs-release-latest.noarch.rpm
$ yum install cvmfs cvmfs-config-default

	Create the file /etc/fuse.conf with the following content:

$ vim /etc/fuse.conf
$ cat /etc/fuse.conf

user_allow_other

	Install a “personal” proxy server:

$ yum install squid

	Check your own http proxy port and keep it for later steps:

$ cat /etc/squid/squid.conf | grep http_port

By default it is 3128.

Ubuntu

	Install dependencies:

$ apt-get install attr autofs gawk gdb uuid uuid-dev

	Install CernVM-FS packages:

$ wget https://ecsft.cern.ch/dist/cvmfs/cvmfs-release/cvmfs-release-latest_all.deb
$ dpkg -i cvmfs-release-latest_all.deb
$ apt-get update
$ apt-get install cvmfs cvmfs-config-default

	Edit the file /etc/fuse.conf with the following content (uncomment ‘user_allow_other’):

$ vim /etc/fuse.conf
$ cat /etc/fuse.conf

Allow non-root users to specify the allow_other or allow_root mount options.
user_allow_other

	Install a “personal” proxy server:

$ apt-get install squid

	Check your own http proxy port and keep it for later steps:

$ cat /etc/squid/squid.conf | grep http_port

By default it is 3128.

2. Configuring CVMFS

This step is the same for the three tested OS:

Mac OS, Centos, Ubuntu

	Create the file /etc/cvmfs/default.local with the following content:

$ vim /etc/cvmfs/default.local
$ cat /etc/cvmfs/default.local

CVMFS_NFILES=32768
CVMFS_REPOSITORIES=softdrive.nl
CVMFS_QUOTA_LIMIT=2000
CVMFS_HTTP_PROXY="http://localhost:8080"

Warning

http proxy port

Note that the file /etc/cvmfs/default.local holds the configuration for your environment and it contains the CVMFS_HTTP_PROXY variable that points to your Squid proxy. In this example the http proxy listens to port 8080. Replace with own http proxy port retrieved in step 1, e.g. CVMFS_HTTP_PROXY="http://localhost:3128" if it listens to port 3128.

	Create the file /etc/cvmfs/config.d/softdrive.nl.conf with the following content:

$ vim /etc/cvmfs/config.d/softdrive.nl.conf
$ cat /etc/cvmfs/config.d/softdrive.nl.conf

CVMFS_SERVER_URL=http://cvmfs01.nikhef.nl/cvmfs/@fqrn@
CVMFS_PUBLIC_KEY=/etc/cvmfs/keys/softdrive.nl.pub

	Create the file /etc/cvmfs/keys/softdrive.nl.pub with the following content:

$ vim /etc/cvmfs/keys/softdrive.nl.pub
$ cat /etc/cvmfs/keys/softdrive.nl.pub

-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA481/kCXbrVtLuzcFZ2uO
EmiAKx28qXIkonPwr/gSmqQ8k1zQA7dKK5YZwZSbVwgYqvhvW6i3vKWLGVDj+elH
1u8uumPzzlAJHrS1XoR8rY4xUULjQBvV9HuJxE6OK4ZEZPvQmeGmjXd446c8J5cv
BQFtaonRnrxAbtO+Z0KtzsNOzBNFegu9z+lT7/fxV17Qh10w5IKQjm/v6jPdj1ME
CrG4QW2S9+Y+7YzbRP5QYaE4cl5cBI3Yb048ufgLJMfX3++uqwGM+rqNs/CzHvsW
dO6Jznr9EbzqbIrTsFeUThNmsGPObxOT3VmB0BTTjrZSYjgf8oEE4hdhgNQgh7vs
OwIDAQAB
-----END PUBLIC KEY-----

	Check the cvmfs config:

$ cvmfs_config chksetup
OK

If you don’t get any errors, then CernVM-FS was successfully installed on your computer. Ignore the warnings for now.

3. Mounting Softdrive

This step is the same for the three tested OS:

Mac OS, Centos, Ubuntu

	Create directories that will be used for the cvmfs mount point and cache folder:

$ mkdir /cvmfs/softdrive.nl /var/lib/cvmfs

	Make sure that Squid is running

	Mount the SoftDrive directory :

$ mount -t cvmfs softdrive.nl /cvmfs/softdrive.nl/

CernVM-FS: running with credentials 10000:10000
CernVM-FS: loading Fuse module... done
CernVM-FS: mounted cvmfs on /cvmfs/softdrive.nl

check mount
$ ls /cvmfs/softdrive.nl/

You should be able to see the directories mounted under softdrive.nl and use the software locally by exporting the relevant paths to your environment.

	Un-mount SoftDrive at will:

$ umount /cvmfs/softdrive.nl/

lcg-lfn-lfc clients

This page includes the basic commands to use lcg-lfn-lfc. For an overview of storage clients, see Storage clients.

Contents

	lcg-lfn-lfc clients

	About

	lcg tools

	Creating/listing

	Transferring data

	Parallel streams

	Removing data

	Putting lcg-lfn-lfn together

	Creating/listing

	Replicating files

	Copying files and registering files in the logical file catalog

	Troubleshooting LFC entries

Warning

In general we don’t recommend the lcg-lfn-lfc clients as many users reported difficulties in usage and encountered worse performance compared to the other Storage clients. If your solution still works with the lcg- tools you can keep on using those; though the lcg- tools are not supported anymore.

About

The Logical File Catalog (LFC) allows you to give more descriptive names to your files, and to order your files in a directory structure. Bear in mind that the LFC is not itself a storage system. It’s just a database that keeps track of your files.

You can manipulate your data with a set of command line tools. Some of these commands start with lfc-, while others start with lcg-, which can be confusing at first.

	lcg-…
	All these commands operate on the data itself. Additionally, some of these commands have “side effects” in the LFC: e.g. the lcg-cr command uploads a file to an SE and registers this file in the LFC under a certain name.

	lfc-…
	These commands only operate on the LFC, and don’t manipulate data. E.g. the command lfc-mkdir creates a new directory in the LFC.

	lfn-…
	The lfn commands allow you interact with the LFC logical names.

Note

To run the examples below you need to have a valid proxy, see StartGridSession.

lcg tools

Creating/listing

	List dCache directories:

$lcg-ls srm://srm.grid.sara.nl:8443/pnfs/grid.sara.nl/data/lsgrid/

	List DPM directories:

$lcg-ls srm://gb-se-lumc.lumc.nl:8446/dpm/lumc.nl/home/lsgrid/

Transferring data

	Copy file from local machine to dCache:

$lcg-cp file:`pwd`/zap.tar srm://srm.grid.sara.nl:8443/pnfs/grid.sara.nl/data/lsgrid/homer/zap.tar

	Copy file from local machine to DPM:

$lcg-cp file:`pwd`/zap.tar srm://gb-se-lumc.lumc.nl:8446/dpm/lumc.nl/home/lsgrid/homer/zap.tar

Parallel streams

Information not available yet.

Removing data

	Remove a file from dCache:

$lcg-del -l srm://srm.grid.sara.nl:8443/pnfs/grid.sara.nl/data/lsgrid/homer/testfile

Putting lcg-lfn-lfn together

Creating/listing

For each of the supported VOs, a separate “top level” directory exists under the /grid/ directory. E.g. to see all the files that are stored for the lsgrid VO, make sure you have a running lsgrid VOMS proxy and then type:

$lfc-ls -l /grid/lsgrid/
drwxrwxr-x 2 30125 3010 0 Feb 05 12:56 arni
drwxrwxr-x 3 30146 3010 0 Mar 06 15:21 dutilh
drwxrwxr-x 3 30147 3010 0 Feb 22 16:12 emc-gwatest
...
...
...

Rather than having to type an absolute path for every file and directory you use, it is instead possible to define a home directory from which you may use relative file/directory paths. You can do this by setting the environment variable LFC_HOME:

$export LFC_HOME='/grid/lsgrid'

	Creating a new directory:

Before you can register any file of your own, you must create a new directory in the file catalog:

$lfc-mkdir /grid/your_vo/your_username

	To check that you have created your directory type:

$export LFC_HOME=/grid/your_vo
$lfc-ls -l

and you should see your directory (plus possibly those of others).

Replicating files

File replication means that you copy the same file to multiple storage
elements. If you then start a Grid job which uses that file, and the job
lands on one of the compute elements of the Life Science Grid, you
then use the file which is nearest to the compute element. This reduces
the time needed to copy the file, and reduces network traffic.

You can replicate a file and use the replicas with the following steps:

	Copy your file to one of the storage elements, while registering the
file in the Logical File Catalog

	Replicate the file to other storage elements, and register the copies
under the same entry in the Logical File Catalog

	In your job description, tell the scheduler where to run jobs by
specifying a data requirement

This section describes the steps.

Copying files and registering files in the logical file catalog

To copy a file from a user interface to one of the storage elements, and
register the file in the logical file catalog:

	determine the full path of the file; for example, using the pwd
command:

$pwd
/home/homer/Projects/input.dat

	determine the full path of the target file, on dCache or DPM; see
Grid file identifiers about how to refer to the target file.

	use lcg-cr and the fulls path to the file to store the first copy of your
file on one of the Storage Elements, and register the file in the logical
file catalog:

$lcg-cr --vo lsgrid \
$ -d srm://gb-se-kun.els.sara.nl/dpm/els.sara.nl/home/lsgrid/homer/input.dat \
$ -l lfn:/grid/lsgrid/homer/input.dat \
$ file:///home/homer/Projects/input.dat

In this example, the file input.dat is copied from the Projects
directory on the local user interface, to a storage element on the Life
Science Cluster in Nijmegen, and registered in the LFC, with the credentials
from the VO lsgrid. Note that this requires membership of the lsgrid VO.

	use lcg-rep to create a replica of the file, and register the replica
with the LFC:

$lcg-rep \
$ -d srm://gb-se-amc.amc.nl/dpm/amc.nl/home/lsgrid/homer/input.dat \
$ lfn:/grid/lsgrid/homer/input.dat

Note that the LFC location is the same as in the lcg-cr command.

	verify that there are two copies of the file, registered under the same
LFC entry:

$lcg-lr lfn:/grid/lsgrid/homer/input.dat
srm://gb-se-kun.els.sara.nl/dpm/els.sara.nl/home/lsgrid/homer/input.dat
srm://gb-se-amc.amc.nl/dpm/amc.nl/home/lsgrid/homer/input.dat

Troubleshooting LFC entries

Note

The LFC needs to support your VO in order to work.

The LFC is a place where you register files, so you can find their replicas that a physically stored on a Storage Element.

If the physical storage is removed or lost, and you don’t have any other replica’s, you end up with only a registration in the LFC.

--
Setting up a testfile to reproduce the situation:

Copy and register a testfile.
lcg-cr testfile -l lfn://grid/lsgrid/homer/demo/testfile

Deleting the srm entry and not the lfc entry.
lcg-del --nolfc srm://srm.grid.sara.nl/pnfs/grid.sara.nl/data/lsgrid/generated/2015-06-05/file25a8581b-1d76-4579-ab1f-5d2e8e58b33c
--
Trying to delete the lfc entry:
lcg-del -a lfn://grid/lsgrid/homer/demo/testfile
Gives me the error:

[SE][advisoryDelete] httpg://srm.grid.sara.nl:8443/srm/managerv1: java.rmi.Remote
Exception: srm advisoryDelete failed; nested exception is:
java.lang.RuntimeException: advisoryDelete(User [name=lsgrid, uid=18050,
gids=[18050], root=/],pnfs/grid.sara.nl/data/lsgrid/generated/2015-06-05/file25a
8581b-1d76-4579-ab1f-5d2e8e58b33c) Error file does not exist, cannot delete

To remove the lfc entry you can use a
Lcg-uf [guid] [surl] command:

List guid
Lcg-lg lfn://grid/lsgrid/homer/demo/testfile

List registered replica's SURL(s)
Lcg-lr lfn://grid/lsgrid/homer/demo/testfile

Issue unregister command to remove the lfc entry:

lcg-uf guid:644ee342-c1f8-4964-b878-a4bd5ccb3d6a srm://srm.grid.sara.nl/pnfs/grid.sara.nl/data/lsgrid/generated/2015-06-05/file25a8581b-1d76-4579-ab1f-5d2e8e58b33c

Or shorter command doing exactly the same:

f=lfn:/grid/lsgrid/homer/demo/testfile lcg-uf $(lcg-lg $f) $(lcg-lr $f)

First Grid job

This section summarises all the steps to submit your first job on the Grid, check its status and retrieve the output:

Contents

	First Grid job

	Grid job lifecycle

	StartGridSession

	Describe your job in a JDL file

	Job list match

	Submit the job to the Grid

	Track the job status

	Cancel job

	Retrieve the output

	Check job output

	Recap & Next Steps

Warning

You can continue with this guide only after you have completed the preparations for Grid. If you skipped that, go back to the Prerequisites section. Still need help with obtaining or installing your certificate? We can help! Contact us at helpdesk@surfsara.nl.

Once you finish with the First Grid job, you can continue with more advanced topics and also Best practices, the section that contains guidelines for porting real complex simulations on the Grid.

Grid job lifecycle

Grid job lifecycle

See also

Have a look at our mooc video that describes the Grid job Lifecycle step by step.

To run your application on the Grid you need to describe its requirements in a specific language called job description language (JDL). This is similar to the information that we need to specify when we run jobs using a batch scheduling system like PBS local jobs, although it is slightly more complex as we are now scheduling jobs across multiple sites.

Except for the application requirements, you also need to specify in the JDL the content of the input/output sandboxes. These sandboxes allow you to transfer data to or from the Grid. The input sandbox contains all the files that you want to send with your job to the worker node, like e.g. a script that you want executed. The output sandbox contains all the files that you want to have transferred back to the UI.

Note

The amount of data that you can transfer using the sandboxes is very limited, in the order of a few megabytes (less than 100MB). This means that you should normally limit the input sandbox to a few script files and the output sandbox to the stderr and stdout files.

Once you have the JDL file ready, you can submit it to multiple clusters with glite-* commands. The Workload Management System (WMS) will schedule your job on a Grid worker node. The purpose of WMS is to distribute and manage tasks across computing resources. More specifically, the WMS will accept your job, assign it to the most appropriate Computing Element (CE), record the job status and retrieve the output.

The following animations illustrate the Grid lifecycle as described above:

	Grid WMS animation [http://web.grid.sara.nl/mooc/animations/wms.html]

	Grid job status animation [http://web.grid.sara.nl/mooc/animations/wms_with_status.html]

StartGridSession

Before submitting your first Grid job, you need to create a proxy from your certificate. This has a short lifetime and prevents you from passing along your personal certificate to the Grid. The job will keep a copy of your proxy and pass it along to the Worker Node.

This section will show you how to create a valid proxy:

	Log in to your UI account:

$ssh homer@ui.grid.sara.nl # replace "homer" with your username

	Create a proxy with the following command and provide your Grid certificate password when prompted:

$startGridSession lsgrid #replace lsgrid with your VO

Alternatively, you might have to login to a VO group. In that case, the syntax is as follows:

$startGridSession lsgrid:/lsgrid/vo_group #replace both the 'lsgrid' words with your VO and 'vo_group' with the name of your VO group

You should see a similar output displayed in your terminal:

Now starting...
Please enter your GRID password:
voms-proxy-init -voms lsgrid --valid 168:00 -pwstdin
Contacting voms.grid.sara.nl:30018 [/O=dutchgrid/O=hosts/OU=sara.nl/CN=voms.grid.sara.nl] "lsgrid"...
Remote VOMS server contacted successfully.

Created proxy in /tmp/x509up_u39111.

Your proxy is valid until Tue Jan 11 09:31:56 CET 2016
Your identity: /O=dutchgrid/O=users/O=sara/CN=Homer Simpson
Creating proxy ... Done
Proxy Verify OK
Your proxy is valid until: Tue Jan 11 09:31:56 2016
A proxy valid for 168 hours (7.0 days) for user /O=dutchgrid/O=users/O=sara/CN=Homer Simpson now exists on px.grid.sara.nl.
Your delegation ID is: homer

Note

What does the startGridSession script actually do?

	It generates a local proxy x509up_uXXX in the UI /tmp/ directory

	It uploads this proxy to Myproxy server

	It delegates the proxy to the WMS with your user name as the delegation ID (DID)

If you want to know more, see the advanced section about Grid authentication.

And now you are ready to submit jobs to the Grid! Or copy data from and to the Grid.

Describe your job in a JDL file

To submit a Grid job you must describe this in a plain text file, called JDL. Optionally, you can check the Computing Elements (CEs) that this job may run on. The JDL file will pass the details of your job to the WMS.

Warning

Make sure you have started your session and created already a valid proxy.

	Log in to your User Interface.

	Create a file with the following content describing the job requirements. Save it as simple.jdl:

1Type = "Job";
2JobType = "Normal";
3Executable = "/bin/hostname";
4Arguments = "-f";
5StdOutput = "simple.out";
6StdError = "simple.err";
7OutputSandbox = {"simple.out","simple.err"};

This job involves no large input or output files. It will return to the user the hostname of the Worker Node that the job will land on. This is specified as the StdOutput file simple.out declared in the OutputSandbox statement.

Job list match

Before actually submitting the job, you can optionally check the matching Computing Elements that satisfy your job description. It does not guarantee anything about the CE load, just matches your JDL criteria with the available VO resources:

$glite-wms-job-list-match -a simple.jdl # replace simple.jdl with your JDL file

Alternatively, use your delegation ID:

$glite-wms-job-list-match -d homer simple.jdl # replace homer with your delegation id, in this case your login name

Note

The -a option should not be used frequently. It creates a proxy of your certificate ‘on-the-fly’ when the job is submitted; therefore -a is quite inefficient when submitting hundreds of jobs.

Your job is now ready. Continue to the next step to submit it to the Grid!

To submit your first Grid job and get an understanding of the job lifecycle, we will perform these steps:

	Job submission

	Status tracking

	Output retrieval

Submit the job to the Grid

First Job explained

See also

For more detailed information about submitting a simple Grid job, have a look at our mooc video My First Grid job.

You should have your simple.jdl file ready in your UI up to this point. When you submit this simple Grid job to the WMS, a job will be created and sent to a remote Worker Node. There it will execute the command /bin/hostname -f and write its standard output and its standard error in the simple.out and simple.err respectively.

	Submit the simple job by typing in your UI terminal this command:

$glite-wms-job-submit -d $USER -o jobIds simple.jdl

Connecting to the service https://wms2.grid.sara.nl:7443/glite_wms_wmproxy_server
====================== glite-wms-job-submit Success ======================
The job has been successfully submitted to the WMProxy
Your job identifier is:

https://wms2.grid.sara.nl:9000/JIVYfkMxtnRFWweGsx0XAA

The job identifier has been saved in the following file:
/home/homer/jobIds
==

Note the use of -d $USER to tell your job that it should use your delegated proxy certificate.

The option -o allows you to specify a file (in this case jobIDs) to store the unique job identifier:

	You can use this URL identifier to monitor your job from the command line or your browser and to get the job output.

	Note that omitting the -o option means that the jobID is not saved in a file. When you do not save this id you will effectively loose the output of your job!

The jobID string looks like this:

$cat jobIds

 ###Submitted Job Ids###
 https://wms2.grid.sara.nl:9000/JIVYfkMxtnRFWweGsx0XAA

Track the job status

To check the current job status from the command line, apply the following command that queries the WMS for the status of the job.

	After submitting the job, type:

$glite-wms-job-status https://wms2.grid.sara.nl:9000/JIVYfkMxtnRFWweGsx0XAA #replace with your jobID

	Alternatively, if you have saved your jobIds into a file you can use the -i option and the filename as argument:

$glite-wms-job-status -i jobIds

	Finally, a third (optional) way to check the job status is with the web browser in which you installed your certificate. In this browser open the jobID link:

https://wms2.grid.sara.nl:9000/JIVYfkMxtnRFWweGsx0XAA #replace with your jobID

Note that the URL can only be accessed by you as you are authenticated to the server with the certificate installed in this browser. If your certificate is not installed in this browser, you will get an authentication error.

Cancel job

	If you realise that you need to cancel a submitted job, use the following command:

$glite-wms-job-cancel https://wms2.grid.sara.nl:9000/JIVYfkMxtnRFWweGsx0XAA #replace with your jobID

	Alternatively, you can use the jobIds file:

$glite-wms-job-cancel -i jobIds

Retrieve the output

The output consists of the files included in the OutputSandbox statement. You can
retrieve the job output once it is successfully completed, in other words the
job status has changed from RUNNING to DONE. The files in the
output sandbox can be downloaded for approximately one week after the job finishes.

Note

You can choose the output directory with the --dir option. If you do not use this option then the output will be copied under the UI /scratch directory with a name based on the ID of the job.

	To get the output, type:

$glite-wms-job-output https://wms2.grid.sara.nl:9000/JIVYfkMxtnRFWweGsx0XAA #replace with your jobID

	Alternatively, you can use the jobIDs file:

$glite-wms-job-output --dir . -i jobIds

where you should substitute jobIds with the file that you used to store the
job ids.

If you omitted the --dir option, your output is stored on the
/scratch directory on the UI. Please remove your files from the
/scratch directory when they are no longer necessary. Also keep in
mind that if the /scratch directory becomes too full, the
administrators remove the older files until enough space is available
again.

Check job output

	To check your job output, browse into the downloaded output directory. This includes the simple.out, simple.err files specified in the OutputSandbox statement:

$ls -l /home/homer/homer_JIVYfkMxtnRFWweGsx0XAA/

-rw-rw-r-- 1 homer homer 0 Jan 5 18:06 simple.err
-rw-rw-r-- 1 homer homer 20 Jan 5 18:06 simple.out

$cat /home/homer/homer_JIVYfkMxtnRFWweGsx0XAA/simple.out # displays the hostname of the Grid worker node where the job landed
wn01.lsg.bcbr.uu.nl

Recap & Next Steps

Congratulations! You have just executed your first job to the Grid!

Let’s summarise what we’ve seen so far.

You interact with the Grid via the UI machine ui.grid.sara.nl. You describe each job in a JDL (Job Description Language) file where you list which program should be executed and what are the worker node requirements. From the UI, you create first a proxy of your Grid certificate and submit your job with glite-* commands. The resource broker, called WMS (short for Workload Management System), accepts your jobs, assigns them to the most appropriate CE (Computing Element), records the jobs statuses and retrieves the output.

This is a short overview of the commands needed to handle simple jobs:

	startGridSession

	startGridSession lsgrid

	submit job

	glite-wms-job-submit -d $USER -o jobIds simple.jdl

	job status

	glite-wms-job-status -i jobIds

	cancel job

	glite-wms-job-cancel -i jobIds

	retrieve job output

	glite-wms-job-output --dir . -i jobIds

See also

Try now to port your own application to the Grid. Check out the Best practices section and run the example that suits your use case. The section Advanced topics will help your understanding for several Grid modules used in the Best practices.

Done with the General, but not sure how to proceed? We can help! Contact us at helpdesk@surfsara.nl.

Contents

	Enabling key-only ssh authentication on Loui

	Prerequisites

	Upload your key

Enabling key-only ssh authentication on Loui

Access to loui will be provided via SSH (Secure Shell) Public key
authentication only. For the highest security of your data and the platform, we
won’t not allow username/password authentication from January 7th, 2019.

To use this method you will need first to configure your SSH public key on a
portal provided by SURFsara. Then you can connect and authenticate to loui
with your SSH keys without supplying your username or password at
each visit.

NB: If you have already configured your ssh key on the portal and used it previously to access
other SURFsara systems (e.g. Softdrive), you don’t need to do anything. The ssh key on the portal
allows you access most of the SURFsara User Interface machines, including `loui`: you install
the key once and use it to authenticate to multiple SURFsara systems.

Prerequisites

	A SURFsara user account

	An SSH key-pair on your laptop (or other machine you connect from)

As a user of loui you shall have received a SURFsara user account.
This account is required to access the SURFsara portal in the step below.

If you already have an ssh key-pair on your laptop please proceed to the next section to
upload it. Else you have to generate a key-pair by using the following command:

$laptop$ ssh-keygen # This will create a key-pair in $HOME/.ssh directory

Upload your key

Follow these steps to upload your key to our SURFsara portal. Note that this is
one time task:

	Step1: Login to the SURFsara portal [https://portal.surfsara.nl/] with your SURFsara user account

	Step2: Click on the tab “Public ssh keys” on the left pane

	Step3: Add your public key by copying the contents of your file id_rsa.pub as shown below:

[image: ../../_images/cua-portal-addssh.png]

	Step4: Type your SURFsara user account password next to the field CUA password. (CUA stands for Central User Administration, in other words your SURFsara account)

	Step5: Submit your changes with a click on the Add sshkey button

From now on you can login to loui with your SSH keys from your laptop
(or other computer where your SSH key was generated/transferred) with:

$ssh username@loui.grid.surfsara.nl

You have now logged in to loui without typing your password!

Note

In case that you have multiple keys in your .ssh/ folder, you would need to specify the key that matches the .pub file that you uploaded on the SURFsara portal, i.e. ssh -i ~/.ssh/surfsarakey username@loui.grid.surfsara.nl

See also

Still need help? Contact us at helpdesk@surfsara.nl

DigiCert certificate

This section describes how to obtain and install a DigiCert Grid certificate. This is a prerequisite to get started on the Grid.

Contents

	DigiCert certificate

	Obtain a DigiCert certificate

	Change the certificate formats

	Convert crt to PEM

	Convert PEM to pkcs12

	Install a DigiCert certificate on the UI

	Install a DigiCert certificate in your browser

Obtain a DigiCert certificate

DigiCert CA allows you to get your Grid certificate instantly from the GEANT Trusted Certificate Service (former was the Terena portal), by using your institutional login and SURFconext.

	Open a Firefox browser in your laptop or in your UI account

	Access the DigiCert portal [https://digicert.com/sso]

	Select your institution from the list and login with your account

	Request a so called Grid certificate. Select: Product: Grid Premium

	In the past, you could leave the CSR empty and your browser would generate one. This no longer works. You will have to paste your own CSR. Open a terminal on your laptop or from the UI generate the CSR with the following commands:

$openssl genrsa -aes256 -out userkey.pem 2048

Generating RSA private key, 2048 bit long modulus
..+++++
...+++++
e is 65537 (0x10001)
Enter pass phrase for userkey.pem:
Verifying - Enter pass phrase for userkey.pem:

Please choose a strong pass phrase. This is the pass phrase you will be asked in some of the steps below as well as when creating grid proxies so remember it well.

$openssl req -new -key userkey.pem -out grid.csr

Enter pass phrase for userkey.pem:

You are about to be asked to enter information that will be incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) []:NL
State or Province Name (full name) []:
Locality Name (eg, city) []:Amsterdam
Organization Name (eg, company) []:
Organizational Unit Name (eg, section) []:
Common Name (eg, fully qualified host name) []:
Email Address []:

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:

Please enter your own full name as ‘Common Name’ and the institutional email address. The rest of the fields can be left empty.

	The above step will create the grid.csr file. You need to copy the contents of this file in the CSR field in the Digicert portal in your browser. You can display its contents with the following command:

$cat grid.csr

	After you fill in the CSR and click on request certificate, the certificate will be sent to you by email and it can also be downloaded from the DigiCert portal.

Note

If you cannot access the DigiCert portal [https://digicert.com/sso] with your institutional account, please have a look to the section “No access to the TCS service in NL” in the TCS document [https://ca.dutchgrid.nl/tcs/TCS2015help.pdf] or contact us at helpdesk@surfsara.nl.

Change the certificate formats

Certificates can be stored in different formats. Different systems use different formats. The two important formats are:

	PEM: stores keys and certificates in separate ascii-files; this format is used by the Grid middleware and storage programs;

	PKCS12: stores keys and certificates in one binary file; this format is used by browsers.

DigiCert creates the certificates in .crt format. Below are the instructions on how to convert it into PEM and PKCS12 format.

Convert crt to PEM

	Download the certificate file and unzip it. Open a terminal and go to the directory where the .crt files are available.

	The following command will convert the certificate in the PEM format

$cat yournamefile.crt > usercert.pem #replace the yournamefile.crt file with your certificate file

	Set the proper permissions to your certificate files:

$chmod 644 usercert.pem
$chmod 400 userkey.pem

Convert PEM to pkcs12

	To convert a PEM file to the PKCS12 format, run on the UI:

openssl pkcs12 -export -inkey userkey.pem -in usercert.pem -out browsercert.p12

Note that you will first need to enter the password that was used when converting the grid.key file to userkey.pem. Next, you need to enter a password to protect the exported key. Enter that password again to verify. Note that you must enter a password and the password must be at least 12 characters; if the password is too short, openssl will fail without error.

Install a DigiCert certificate on the UI

	Open a terminal and connect to the User Interface with your personal UI account:

$ssh homer@ui.grid.sara.nl # replace "homer" with your username! For LSG users, also replace the host with your local ui.

	Create a $HOME/.globus directory in your UI account:

$mkdir $HOME/.globus

	If you saved the certificate files on your laptop, copy it from your local machine to your .globus directory on the UI.

[homer@localmachine]$scp /PATH-TO-P12-FILE/browsercert.p12 homer@ui.grid.sara.nl:~/.globus # replace "homer" with your username!
[homer@localmachine]$scp /PATH-TO-P12-FILE/usercert.key homer@ui.grid.sara.nl:~/.globus # replace "homer" with your username!
[homer@localmachine]$scp /PATH-TO-P12-FILE/usercert.pem homer@ui.grid.sara.nl:~/.globus # replace "homer" with your username!

The certificate and private key file should now be present in the .globus directory (notice the dot!) on the User Interface. Note that the private key file should be read-only and only readable to you.

	Set the proper permissions to your certificate files on the UI:

$cd $HOME/.globus
$chmod 644 usercert.pem
$chmod 400 userkey.pem

Install a DigiCert certificate in your browser

In order to apply for a VO membership you will have to install your certificate in your browser. This can also be done from your laptop, but we will show instructions for the UI.

	
	To import the .p12 file in your browser, open a Firefox window ($ firefox &) on the UI and apply the following steps (Note that you may have to copy the .p12 file to a directory accessible from your browser):
	
	From the Firefox Menu bar select:

	For Firefox versions older than v57.0: Edit > Preferences > Advanced > View Certificates > Import

	For Firefox versions higher than v57.0: Firefox > Preferences > Privacy & Security > scroll to the bottom "Security" section > View Certificates > Import

	Select the browsercert.p12 file from the UI local directory

	Give the password you set in the previous step.

	You should now see the certificate listed. Close the window.

Problems installing the certificate?

See also

Need more details for installing your certificate on the UI or browser? Check out our mooc video User Interface machine.

	Verify that your certificate is valid and properly installed in your browser by accessing this website from the browser that you have your certificate installed:

https://voms.grid.sara.nl:8443/vomses/

If you receive an SSL authentication error, then try repeating the steps carefully as they come. If you managed to access the page above, your certificate is successfully installed!

See also:

Does my key match the certificate?

What is the expiry date of my certificate?

How can I see the subject of my certificate?

List of Grid CAs

If Dutchgrid or Sectigo is not an option for you, please have a look at the following list of Certificate Authorities that are supported on the grid.

$10:30 ui.grid.sara.nl:/home/homer
$homer$ for rootcert in /etc/grid-security/certificates/*.pem ; do openssl x509 -in $rootcert -noout -subject ; done | sed -e 's/^subject= //' | sort
/C=AE/O=DarkMatter LLC/CN=DarkMatter Assured CA
/C=AE/O=DarkMatter LLC/CN=DarkMatter Secure CA
/C=AM/O=ArmeSFo/CN=ArmeSFo CA
/C=AR/O=e-Ciencia/OU=UNLP/L=CeSPI/CN=PKIGrid
/C=AT/O=AustrianGrid/OU=Certification Authority/CN=Certificate Issuer
/C=BM/O=QuoVadis Limited/CN=QuoVadis Grid ICA G2
/C=BM/O=QuoVadis Limited/CN=QuoVadis Root CA 2
/C=BM/O=QuoVadis Limited/CN=QuoVadis Root CA 2 G3
/C=BM/O=QuoVadis Limited/CN=QuoVadis Root CA 3 G3
/C=BM/O=QuoVadis Limited/OU=Issuing Certification Authority/CN=QuoVadis Grid ICA
/C=BM/O=QuoVadis Limited/OU=Root Certification Authority/CN=QuoVadis Root Certification Authority
/C=BR/O=ANSP/OU=ANSPGrid CA/CN=ANSPGrid CA
/C=CA/O=Grid/CN=Grid Canada Certificate Authority
/C=CL/O=REUNACA/CN=REUNA Certification Authority
/C=CN/O=HEP/CN=Institute of High Energy Physics Certification Authority
/C=CY/O=CyGrid/O=HPCL/CN=CyGridCA
/C=DE/O=DFN-Verein/OU=DFN-PKI/CN=DFN SLCS-CA
/C=DE/O=DFN-Verein/OU=DFN-PKI/CN=DFN-Verein PCA Grid - G01
/C=DE/O=GermanGrid/CN=GridKa-CA
/C=EG/O=EG-GRID/CN=EG-GRID Certification Authority
/C=FR/O=CNRS/CN=CNRS2
/C=FR/O=CNRS/CN=CNRS2-Projets
/C=FR/O=CNRS/CN=GRID2-FR
/C=GB/ST=Greater Manchester/L=Salford/O=COMODO CA Limited/CN=COMODO RSA Certification Authority
/C=GB/ST=Greater Manchester/L=Salford/O=Comodo CA Limited/CN=AAA Certificate Services
/C=GR/O=HellasGrid/OU=Certification Authorities/CN=HellasGrid CA 2016
/C=HR/O=edu/OU=srce/CN=SRCE CA
/C=HU/O=NIIF/OU=Certificate Authorities/CN=NIIF Root CA 2
/C=IR/O=IPM/O=IRAN-GRID/CN=IRAN-GRID CA
/C=IR/O=IPM/OU=GCG/CN=IRAN-GRID-G2 CA
/C=IT/O=INFN/CN=INFN Certification Authority
/C=JP/O=KEK/OU=CRC/CN=KEK GRID Certificate Authority
/C=JP/O=NII/OU=HPCI/CN=HPCI CA
/C=KR/O=KISTI/O=GRID/CN=KISTI Grid Certificate Authority
/C=MA/O=MaGrid/CN=MaGrid CA
/C=MK/O=MARGI/CN=MARGI-CA
/C=MX/O=UNAMgrid/OU=UNAM/CN=CA
/C=NL/O=NIKHEF/CN=NIKHEF medium-security certification auth
/C=NL/O=TERENA/CN=TERENA eScience Personal CA
/C=NL/O=TERENA/CN=TERENA eScience SSL CA
/C=NL/ST=Noord-Holland/L=Amsterdam/O=TERENA/CN=TERENA eScience Personal CA 2
/C=NL/ST=Noord-Holland/L=Amsterdam/O=TERENA/CN=TERENA eScience Personal CA 3
/C=NL/ST=Noord-Holland/L=Amsterdam/O=TERENA/CN=TERENA eScience SSL CA 2
/C=NL/ST=Noord-Holland/L=Amsterdam/O=TERENA/CN=TERENA eScience SSL CA 3
/C=PK/O=NCP/CN=PK-GRID-CA
/C=PL/O=GRID/CN=Polish Grid CA
/C=PT/O=LIPCA/CN=LIP Certification Authority
/C=RS/O=AEGIS/CN=AEGIS-CA
/C=RU/O=RDIG/CN=Russian Data-Intensive Grid CA
/C=SE/O=AddTrust AB/OU=AddTrust External TTP Network/CN=AddTrust External CA Root
/C=SI/O=SiGNET/CN=SiGNET CA
/C=SK/O=SlovakGrid/CN=SlovakGrid CA
/C=TR/O=TRGrid/CN=TR-Grid CA
/C=TW/O=AS/CN=Academia Sinica Grid Computing Certification Authority Mercury
/C=UK/O=eScienceCA/OU=Authority/CN=UK e-Science CA 2B
/C=UK/O=eScienceRoot/OU=Authority/CN=UK e-Science Root
/C=US/O=DigiCert Grid/OU=www.digicert.com/CN=DigiCert Grid Trust CA
/C=US/O=DigiCert Grid/OU=www.digicert.com/CN=DigiCert Grid Trust CA G2
/C=US/O=DigiCert Inc/OU=www.digicert.com/CN=DigiCert Assured ID Root CA
/C=US/O=Internet2/OU=InCommon/CN=InCommon IGTF Server CA
/C=US/O=National Center for Supercomputing Applications/OU=Certificate Authorities/CN=MyProxy CA 2013
/C=US/O=National Center for Supercomputing Applications/OU=Certificate Authorities/CN=Two Factor CA 2013
/C=US/O=Pittsburgh Supercomputing Center/CN=PSC MyProxy CA
/C=US/ST=New Jersey/L=Jersey City/O=The USERTRUST Network/CN=USERTrust RSA Certification Authority
/C=US/ST=UT/L=Salt Lake City/O=The USERTRUST Network/OU=http://www.usertrust.com/CN=UTN-USERFirst-Client Authentication and Email
/C=US/ST=UT/L=Salt Lake City/O=The USERTRUST Network/OU=http://www.usertrust.com/CN=UTN-USERFirst-Hardware
/C=ch/O=CERN/CN=CERN Root Certification Authority 2
/DC=BR/DC=UFF/DC=IC/O=UFF LACGrid CA/CN=UFF Latin American and Caribbean Catch-all Grid CA
/DC=CN/DC=Grid/CN=Root Certificate Authority at CNIC
/DC=CN/DC=Grid/DC=SDG/CN=Scientific Data Grid CA - G2
/DC=DZ/DC=ARN/O=DZ e-Science GRID/CN=DZ e-Science CA
/DC=GE/DC=TSU/CN=TSU Root CA
/DC=HK/DC=HKU/DC=GRID/CN=HKU Grid CA
/DC=IN/DC=GARUDAINDIA/CN=Indian Grid Certification Authority
/DC=MD/DC=MD-Grid/O=RENAM/OU=Certification Authority/CN=MD-Grid CA
/DC=MY/DC=UPM/DC=MYIFAM/C=MY/O=MYIFAM/CN=Malaysian Identity Federation and Access Management
/DC=ORG/DC=SEE-GRID/CN=SEE-GRID CA 2013
/DC=RO/DC=RomanianGRID/O=ROSA/OU=Certification Authority/CN=RomanianGRID CA
/DC=bg/DC=acad/CN=BG.ACAD CA
/DC=by/DC=grid/O=uiip.bas-net.by/CN=Belarusian Grid Certification Authority
/DC=ch/DC=cern/CN=CERN Grid Certification Authority
/DC=ch/DC=cern/CN=CERN LCG IOTA Certification Authority
/DC=com/DC=DigiCert-Grid/O=DigiCert Grid/CN=DigiCert Grid CA-1
/DC=com/DC=DigiCert-Grid/O=DigiCert Grid/CN=DigiCert Grid CA-1 G2
/DC=com/DC=DigiCert-Grid/O=DigiCert Grid/CN=DigiCert Grid Root CA
/DC=cz/DC=cesnet-ca/O=CESNET CA/CN=CESNET CA 3
/DC=cz/DC=cesnet-ca/O=CESNET CA/CN=CESNET CA Root
/DC=es/DC=irisgrid/CN=IRISGridCA
/DC=gov/DC=fnal/O=Fermilab/OU=Certificate Authorities/CN=Kerberized CA HSM
/DC=ke/DC=kenet/O=Kenya Education Network Trust/OU=Research Services/CN=KENET CA
/DC=ke/DC=kenet/O=Kenya Education Network Trust/OU=Research Services/CN=KENET ROOT CA
/DC=me/DC=ac/DC=MREN/CN=MREN-CA
/DC=net/DC=ES/OU=Certificate Authorities/CN=NERSC Online CA
/DC=nl/DC=dutchgrid/O=Certification Authorities/CN=DCA Root G1 CA
/DC=nl/DC=e-infra/OU=Certification Authorities/CN=Worthless NL e-Infra Zero Tutorial CA 1
/DC=org/DC=cilogon/C=US/O=CILogon/CN=CILogon OSG CA 1
/DC=org/DC=cilogon/C=US/O=CILogon/CN=CILogon Silver CA 1
/DC=org/DC=egee-ne/OU=Training Services/CN=Worthless EGEE Northern and Benelux Tutorial CA 1
/DC=org/DC=ugrid/CN=UGRID CA
/O=Grid/O=NorduGrid/CN=NorduGrid Certification Authority 2015

Life Science Grid

On this page you will find general information about the Life Science Grid (LSG), the users of the LSG infrastructure, and the available LSG clusters:

Contents

	Life Science Grid

	About

	For whom

	LSG clusters

Warning

The Life Science Grid infrastructure is scheduled to be decommissioned mid 2018. After the decommissioning the smaller LSG clusters within the UMC’s and other universities will cease to exist; the large central Grid clusters at NIKHEF and SURFsara will remain. More details about the decommissioning can be found here: https://userinfo.surfsara.nl/documentation/decommissioning-life-science-grid

About

The Life Science Grid [https://www.surf.nl/en/services-and-products/life-science-grid/index.html] (LSG) is a network of compute clusters intended specifically for researchers in the life sciences. The LSG infrastructure consists of a series of connected computer clusters which are placed within the working environment of Life Scientists while being fully managed remotely by experts at SURFsara.

Since 2007, SURFsara has placed several powerful computer clusters at the local sites of interested universities. Research institutions in the Netherlands house clusters that are embedded in the international Grid infrastructure.

For whom

The Life Science Grid is open to all Life Scientists based in the Netherlands. It accommodates Life Scientists on Dutch universities and medical centers to perform data analysis or other computational work on a variety of scales, from a few occasional analysis runs up to thousands of production jobs continuously, on datasets ranging from a few gigabytes to hundreds of terabytes and beyond.

The LSG infrastructure is tailored specifically for applications within the life-sciences domain, with features that follow-up on specific difficulties experienced by today’s Life Scientists. Data and applications can be shared not only among colleagues in your own research lab but also with collaborators at other locations, which is not a trivial thing in highly secured hospital environments. Data may also be secured behind the institute walls if needed.

LSG clusters

[image: ../../_images/LSG_700px.png]
Currently, ten LSG clusters are in place at the following sites:

	LSG_BCBR

	Utrecht

	LSG_AMC

	Amsterdam

	LSG_EMC

	Rotterdam

	LSG_KUN

	Nijmegen

	LSG_LUMC

	Leiden

	LSG_RUG

	Groningen

	LSG_TUD

	Delft

	LSG_UM

	Maastricht

	LSG_VU

	Amsterdam

	LSG_WUR

	Wageningen

The technical specifications of a single LSG cluster are described in LSG specifications.

Life Science Grid clusters

The current page provides information about the Life Science Grid (LSG) clusters and their locations, local support contact persons, and DNS addresses of User Interface (UI) and Storage Element (SE) machines.

Contents

	Life Science Grid clusters

	About

	Locations and local support contacts

	Cluster details

	Aditional Storage Elements

	Security

Warning

The Life Science Grid infrastructure is scheduled to be decommissioned mid 2018. After the decommissioning the smaller LSG clusters within the UMC’s and other universities will cease to exist; the large central Grid clusters at NIKHEF and SURFsara will remain. More details about the decommissioning can be found here: https://userinfo.surfsara.nl/documentation/decommissioning-life-science-grid

About

The Life Science Grid is a compute and data processing infrastructure that is available for all Life Science researchers working in the Netherlands. The Life Science Grid consists of a series of computer clusters that can be used either as a local facility or as an integrated Grid environment. For both types of usage, you will need an account on a User Interface machine. Accounts on the user interface machines are managed via a central system at SURFsara, and can be arranged after verification by a local site support contact person. To arrange access, the most efficient way is to ask (one of) your local support contact(s) to send a request to our helpdesk for access to the local User Interface machine. Your local support person will need your name, e-mail address, telephone number and nationality, and will verify that you are employed at the relevant institution and an active researcher in one of the Life Science disciplines.

Locations and local support contacts

	Location

	LSG Site

	Local support contact(s)

	Notes

	AMC, Amsterdam

	LSG_AMC

	
Silvia Olabarriaga

	

	Delft University of Technology

	LSG_TUD

	Robbert Eggermont

	

	UMCG, Groningen

	LSG_RUG

	
Peter Horvatovich

Morriz Swertz

	

	LUMC, Leiden

	LSG_LUMC

	Michèle Huijberts

	

	Maastricht University

	LSG_UM

	
Maarten Coonen

Nuno Nunes

	

	Radboud University, Nijmegen

	LSG_KUN

	
Christian Gilissen

Gert Vriend

Janita Bralten

	Includes a 2TB RAM High-memory node;
contact helpdesk@surfsara.nl for access.

	Erasmus MC, Rotterdam

	LSG_EMC

	Henri Vrooman

	

	Utrecht University

	LSG_BCBR

	
Alexandre Bonvin

Johan van der Zwan

	

	VU University, Amsterdam

	LSG_VU

	René Pool

	

	Wageningen University

	LSG_WUR

	Harm Nijveen

	

Cluster details

The following table lists the DNS addresses of the User Interface and Storage Element services, for each of the LSG sites.

	LSG Site

	User interface

	Storage element

	LSG Storage SURL

	LSG_AMC

	gb-ui-amc.amc.nl

	gb-se-amc.amc.nl

	srm://gb-se-amc.amc.nl:8446/dpm/amc.nl/home/lsgrid/

	LSG_TUD

	gb-ui-tud.ewi.tudelft.nl

	gb-se-tud.ewi.tudelft.nl

	srm://gb-se-tud.ewi.tudelft.nl:8446/dpm/ewi.tudelft.nl/home/lsgrid

	LSG_RUG

	gb-ui-rug.sara.usor.nl

	gb-se-rug.sara.usor.nl

	srm://gb-se-rug.sara.usor.nl:8446/dpm/sara.usor.nl/home/lsgrid

	LSG_LUMC

	gb-ui-lumc.lumc.nl

	gb-se-lumc.lumc.nl

	srm://gb-se-lumc.lumc.nl:8446/dpm/lumc.nl/home/lsgrid

	LSG_UM

	ui.lsg.maastrichtuniversity.nl

	se.lsg.maastrichtuniversity.nl

	srm://se.lsg.maastrichtuniversity.nl:8446/dpm/lsg.maastrichtuniversity.nl/home/lsgrid

	LSG_KUN

	gb-ui-kun.els.sara.nl

	gb-se-kun.els.sara.nl

	srm://gb-se-kun.els.sara.nl:8446/dpm/els.sara.nl/home/lsgrid

	LSG_EMC

	gb-ui-emc.erasmusmc.nl

	gb-se-emc.erasmusmc.nl

	srm://gb-se-emc.erasmusmc.nl:8446/dpm/erasmusmc.nl/home/lsgrid

	LSG_BCBR

	ui.lsg.bcbr.uu.nl

	se.lsg.bcbr.uu.nl

	srm://se.lsg.bcbr.uu.nl:8446/dpm/lsg.bcbr.uu.nl/home/lsgrid

	LSG_VU

	ui.lsg.psy.vu.nl

	se.lsg.psy.vu.nl

	srm://se.lsg.psy.vu.nl:8446/dpm/lsg.psy.vu.nl/home/lsgrid

	LSG_WUR

	gb-ui-wur.els.sara.nl

	gb-se-wur.els.sara.nl

	srm://gb-se-wur.els.sara.nl:8446/dpm/els.sara.nl/home/lsgrid

User Interface machines can be accessed with any SSH client.
To learn how to access the Storage Elements, see Grid storage

	LSG Site

	Computing element queue

	LSG_AMC

	gb-ce-amc.amc.nl:8443/cream-pbs-<queue>

	LSG_TUD

	gb-ce-tud.ewi.tudelft.nl:8443/cream-pbs-<queue>

	LSG_RUG

	gb-ce-rug.sara.usor.nl:8443/cream-pbs-<queue>

	LSG_LUMC

	gb-ce-lumc.lumc.nl:8443/cream-pbs-<queue>

	LSG_UM

	ce.lsg.maastrichtuniversity.nl:8443/cream-pbs-<queue>

	LSG_KUN

	gb-ce-kun.els.sara.nl:8443/cream-pbs-<queue>

	LSG_EMC

	gb-ce-emc.erasmusmc.nl:8443/cream-pbs-<queue>

	LSG_BCBR

	ce.lsg.bcbr.uu.nl:8443/cream-pbs-<queue>

	LSG_VU

	ce.lsg.psy.vu.nl:8443/cream-pbs-<queue>

	LSG_WUR

	gb-ce-wur.els.sara.nl:8443/cream-pbs-<queue>

The possible <queue> values can be express, medium and long. For
and update listing of the available queues use the command lcg-infosites.

Aditional Storage Elements

The following Storage Elements are also availble when you are member of the lsgrid VO.

	Site

	Storage element

	LSG Storage SURL

	Remarks

	SURFsara

	srm://srm.grid.sara.nl

	srm://srm.grid.sara.nl:8443/pnfs/grid.sara.nl/data/lsgrid

	See dCache

	Test Cluster SURFsara

	srm://gb-se-ams.els.sara.nl

	srm://gb-se-ams.els.sara.nl:8446/dpm/els.sara.nl/home/lsgrid

	Do not use: testing purpose only

Security

The default permissions on the LSG clusters for /home, /home/nobackup and /scratch directories is:

	read+write+execute for the user

	read+execute for the group

	read+execute for others

In general, where security is important, we advise you to verify and set the permissions to abide by your data access regulations, especially for temporary working directories under /scratch and /tmp. For example, you can do $ umask 0077 to keep all data invisible to other users or $ umask 0007 to keep it closed for everone outside the group. Another point of attention is cleaning up intermediate data before job exit.

PBS local jobs

In this page we will talk about job submission to the local Life Science Grid (LSG) cluster. The information here applies to LSG users who own an account on their local LSG cluster:

Contents

	PBS local jobs

	Introduction

	Quickstart example

	Preamble

	Submit a PBS job

	Directives

	System status commands

	Local queues

	How to use local scratch

	Example with $TMPDIR

	How to use Grid Storage from the local cluster

Warning

The Life Science Grid infrastructure is scheduled to be decommissioned mid 2018. After the decommissioning the smaller LSG clusters within the UMC’s and other universities will cease to exist; the large central Grid clusters at NIKHEF and SURFsara will remain. More details about the decommissioning can be found here: https://userinfo.surfsara.nl/documentation/decommissioning-life-science-grid

Introduction

The Life Science Grid or LSG is a group of clusters which can be used locally only, or as one big cluster (Grid). Each local LSG cluster is part of the Life Science Grid that has its own User Interface (UI) and two Worker Nodes of 64 cores (see LSG specifications). You can use the local UI for submitting both local pbs jobs or Grid jobs.

In this section we will focus on the usage of local LSG cluster as a common batch system. The local job submission can be useful when:

	prototyping your Grid application

	running multicore jobs with high number of cores (e.g. more than 8 cores)

	running applications that require just a few jobs to complete. For a large-scale applications that require thousands of analysis to complete, the best option is Grid due to its large compute and storage capacity.

Quickstart example

In this example we will submit a simple PBS job to the local LSG cluster using the fractals example.

Preamble

	Log in to the LSG User Interface, e.g. “ams” cluster (you can find the hostname in the list of LSG hostnames):

$ssh -X homer@gb-ui-ams.els.sara.nl # replace homer with your username and the UI address of your local cluster

	Copy the tarball pbsp_fractals.tar to your UI directory:

$wget http://doc.grid.surfsara.nl/en/latest/_downloads/pbs_fractals.tar

	Copy the fractals source code fractals.c to your UI directory.

$wget http://doc.grid.surfsara.nl/en/latest/_downloads/fractals.c

	Untar the example and check the files:

$tar -xvf pbs_fractals.tar
$cd pbs_fractals/
$mv ../fractals.c ./
$ls -l

-rw-r--r-- 1 homer homer fractals.c
-rw-rw-r-- 1 homer homer wrapper.sh

	Compile the example:

$cc fractals.c -o fractals -lm

Submit a PBS job

	Submit the job to the local cluster:

$qsub wrapper.sh

6401.gb-ce-ams.els.sara.nl

This command returns a jobID (6401) that can be used to monitor the progress of the job.

	Monitor the progress of your job:

$qstat -f 6401 # replace 6401 with your jobID

Optionally, when the job finishes, display the job output image:

$convert output "output.png"
$display output.png

	List your own jobs:

$qstat -u homer # replace homer with your username

	Cancel the job you submitted:

$qdel 6401 # replace 6401 with your jobID

Directives

	Specify the maximum job walltime in hh::mm:ss:

##PBS -l walltime=4:00:00 # the job will run 4h at maximum

	Specify the number of cores to be allocated for your job:

##PBS -l nodes=1:ppn=2 # asks two cores on a single node

	The default stdout/stderr target is the directory that you submit the job from. The following line changes the stdout/stderr directory to a specified path (e.g. samples directory):

##PBS -e /home/homer/samples/
##PBS -o /home/homer/samples/

System status commands

	List all the running/queued jobs in the cluster:

$qstat

	Get details for all jobs in a queue, e.g. “long”:

$qstat -f long

	Show all the running jobs in the system and the occupied cores on the two worker nodes. The very last number in each row (after ‘/‘) shows the rank of corresponding core:

$qstat -an1

	List all running jobs per worker node and core:

$pbsnodes

Local queues

On the LSG clusters you can find different queue types. We recommend you to estimate the walltime of your jobs and specify the queue to send your job. This can be done with the ‘-q’ option in your qsub command. For example, if you want to run a job for 72 hours, you need to specify the queue “long”:

$qsub -q long wrapper.sh # allow job to run for 72 hours

If you don’t specify a particular queue, then your jobs will be scheduled by default on the medium queue (32 hours limit). When the queue walltime is reached, the job will be killed.

See also

How to run PBS jobs with wallclock greater than 36 hours on the Life Science Grid?

How to use local scratch

When you submit a local job, it will land on one of the cluster nodes. This means that the working directory will be different to the directory from where you submit the job (the worker node is a different machine to the UI).

The home UI directory is mounted on the worker node via NFS. For better I/O performance, copy files, computation to the worker node’s /scratch.

Note

There is an environment variable set on the worker nodes called $TMPDIR that points to your job directory, e.g. /scratch/<jobID>.gb-ui-ams.els.sara.nl/.

Use $TMPDIR in your scripts to locate the /scratch directory. The $TMPDIR directory also makes sure that any created data is cleaned up properly when the job has finished.

Example with $TMPDIR

	Use the {PBS_O_WORKDIR} variable to locate your scripts and make sure that your code does not contain any hard-coded paths pointing to your home directory. This variable points to the directory from where you submit the job. Edit the script that you submit with qsub as:

cd $TMPDIR
cp -r ${PBS_O_WORKDIR}/<your scripts,files> . # note the dot at the end of `cp` command
...
Run the executables
...
When done, copy the output to your home directory:
cp -r $TMPDIR/results ${PBS_O_WORKDIR}/

	Submit the script with qsub.

How to use Grid Storage from the local cluster

There are many cases that the data that your program needs to run can not be available locally, either because the volume of your home directory is limited or because it is already stored on the Grid storage.

Any interaction with the Grid, compute nodes or storage element, requires a proxy for your authentication. Even if you run your compute on a local cluster worker node but need to use data from the Grid storage, you will have to Get a Grid certificate and Join a Virtual Organisation.

To access the Grid storage from jobs submitted locally through qsub, you need
a valid proxy certificate. However, for local jobs submitted using qsub this proxy certificate is not copied automatically.

Therefore, to interact with the Grid storage, you need:

	A proxy certificate, see StartGridSession. You need to do this once, not for each job.

	To tell the system where the proxy certificate is:

	Copy your proxy certificate to for example your home-directory using:

$cp /tmp/x509up_u39111 /home/homer/ # replace x509up_u39111 with your own proxy file, here "39111" is your unix user-id

	Set the rights of this file to 600 and treat it as confidential:

$chmod 600 /home/homer/x509up_u39111

Because your home-directory is shared across the cluster, your proxy will
also be available on all nodes within the cluster.

You also need to do this step once every week, and not for each job.

	Tell the system where your proxy certificate is, by setting an environment variable. Add in the job script:

$export X509_USER_PROXY=/home/homer/x509up_u39111

Now within the job, your Storage clients commands will work.

See also

This section covers the basic usage of PBS jobs particularly on the LSG. For advanced usage of a PBS cluster you may check out the Lisa batch usage [https://userinfo.surfsara.nl/systems/lisa/usage/batch-usage] guide or the NYU Cluster usage [https://wikis.nyu.edu/display/NYUHPC/Running+jobs] guide.

Bootstrap application

When you have a binary program that you want to execute on the Grid you need to create a bootstrap application. This will execute a wrapper script that contains all the necessary information for your job to run. In this page we will show an example to run your bootstrap application on the Grid:

Contents

	Bootstrap application

	Problem description

	Quickstart example

	Preamble

	Run locally

	Run on the Grid

Problem description

You want to execute your own binary program on the Grid. When you have a binary program that you want to execute on the Grid you can send it along with the job submission. This can be done when the executable is not too large. The limit is about 100MB, for larger executables you can use Softdrive or the Grid storage.

Bootstrap basics

See also

Have a look at our mooc video Executables on Grid for a simple example to get started.

To send such an executable along we will use the InputSandBox in the job description. The program itself will be executed by a simple shell script (“wrapper.sh”). There are several reasons to wrap the call to your executable with a script. One important one is that the executable file might not have executable permissions after it is copied to the Grid worker node. A second is that it is more flexible in the use of input parameters and also to redirect the output. In short, this script provides the correct environment for the execution of the binary.

In this page we will demonstrate a simple bootstrap application using the fractals example.

Quickstart example

Preamble

	Log in to the User Interface (UI):

$ssh homer@ui.grid.sara.nl # replace homer with your username

	Copy the tarball bootstrap_fractals.tar to your UI directory.

	Copy the fractals source code fractals.c to your UI directory.

	Untar the example and check the files:

$tar -xvf bootstrap_fractals.tar
$cd bootstrap_fractals/
$mv ../fractals.c ./
$ls -l

-rw-r--r-- 1 homer homer fractals.c
-rw-rw-r-- 1 homer homer fractals.jdl
-rw-rw-r-- 1 homer homer wrapper.sh

	Compile the example:

$cc fractals.c -o fractals -lm

Warning

It is advisable to compile your programs on the User Interface (UI) Machine. The Grid nodes have similar environments and the chance of your job to run successfully on a remote worker node is larger when your program is able to run on the UI.

Run locally

	Run the example locally on the UI with a set of parameters to understand the program:

$./fractals -o output -q 0.184 -d 2280 -m 4400 # try different parameters, e.g. -q 0.184 -d 2280 -m 4400

This will take a while, depending on the input parameters you selected. Once finished, it will create the “output” file.

	Convert the output file to .png format and display the picture:

$convert output "output.png"
$display output.png

Run on the Grid

	Create a proxy valid for a week:

$startGridSession lsgrid # replace lsgrid with your VO

	Inspect the JDL file fractals.jdl:

Type = "Job";
JobType = "Normal";
Executable = "/bin/sh";
Arguments = "wrapper.sh";
StdOutput = "stdout";
StdError = "stderr";
InputSandbox = {"wrapper.sh","fractals"};
OutputSandbox = {"stdout","stderr","output"};

In the JDL file we specify the content of the in- and output sandboxes. These sandboxes allow you to transfer small files to or from the Grid. The input sandbox contains all the files that you want to send with your job to the worker node, like e.g. the fractals script that you want executed. The output sandbox contains all the files that you want to have transferred back to the UI, e.g. the output fractals image.

	Inspect the contents of the wrapper.sh script:

$ cat wrapper.sh
#!/bin/bash
chmod u+x fractals
./fractals -o output -q 0.184 -d 2280 -m 4400
...

Once this jobs lands on the Grid, it will execute the wrapper.sh script which is a master script to set the program environment and initiate the program execution. In the wrapper.sh script you may include also the commands to retrieve input from a Grid storage location or transfer the output results to a Grid storage location.

	Submit the job to the Grid:

$glite-wms-job-submit -d $USER -o jobIds fractals.jdl

	Check the job status from command line on the UI:

glite-wms-job-status https://wms2.grid.sara.nl:9000/6swP5FEfGVZ69tVB3PwnDQ #replace with your jobID

or
glite-wms-job-status -i jobIds

	Once the job is finished, get the job output to the UI:

$glite-wms-job-output --dir . -i jobIds

	Convert the output file to .png format and display the picture:

$convert homer_6swP5FEfGVZ69tVB3PwnDQ/output "output.png" # replace with your job output directory
$display output.png

Data replication

In this page we will show an example for running applications on multiple LSG clusters with replicas that also require big volumes data:

Contents

	Data replication

	Problem description

	Data Requirements

	Moving output data from the job to the SE

lcg/lfc/lfn? Only for large files with multiple replicas.

The lectures Data management on the Grid partI, partII and partIII present the lcg/lfc/lfn Storage clients. However, we advise you to better use the globus client or srm client, unless you need to run jobs on multiple sites which require access on the same large dataset (or database). In case of doubts, contact us at helpdesk@surfsara.nl.

Problem description

The InputSandbox and OutputSandbox attributes in the JDL file are the basic way to move files to and from the User Interface (UI) and the Worker Node (WN). However, if large (from about 100 MB and larger) or many files are involved you should not use these sandboxes to move data around. Instead you can use the Storage Elements and work with the lfc and lcg commands. These commands, and the storage system in general, are explained in the section lcg-lfn-lfc clients.

Here we give an example of how to use large input and output files which are needed by a job. We will use replicas to avoid transferring e.g. a database to multiple clusters every time.

Data Requirements

This case describes the DataRequirements attribute in your job description file; this attribute is a list of classads representing the data requirements for the job. Each classad has to contain three attributes :

	InputData
	The list of input files needed by the job

	DataCatalog
	The type of data catalog - needed by the Grid middleware. This is needed in order to
resolve logical names to physical names. Fill in “DLI” here.

	DataCatalogType
	The address (URL) of the data catalog if this is not the VO default one.

The presence of the DataRequirements attribute causes the job to run on a Computing Element (CE) which is next to the Storage Element (SE) where the requested file is stored. Note that this attribute doesn’t perform the actual copy of the file from the SE to the WN; as we will see, this has to be done by the user.

To do this, first register a file on a SE and to the LFC. We do this by copy and register (lcg-cr):

$lcg-cr --vo lsgrid -d gb-se-ams.els.sara.nl -l lfn:/grid/lsgrid/homer/test.txt file:/home/homer/local_test.txt
guid:522350d4-a28a-48aa-939b-d85c9ab5443f

Note that the guid part is what we get as return value from the command. It identifies the file uniquely in the Grid storage. You can save this id for emergencies. The part which starts with lfn: identifies the logical file name of our uploaded file.

Note

The LFC needs to support your VO in order to work.

Second, create a JDL file that describes your job. It will contain the LFC of the file, as is shown here.

$ cat inputdata.jdl
[
 Executable = "/bin/sh";
 Arguments = "scriptInputData.sh lfn:/grid/lsgrid/homer/test.txt";

 StdOutput = "std.out";
 StdError = "std.err";

 InputSandbox = "scriptInputData.sh";
 OutputSandbox = {"std.out","std.err"};

 DataRequirements = {
 [
 InputData = {"lfn:/grid/lsgrid/homer/test.txt"};
 DataCatalogType = "DLI";
 DataCatalog = "http://lfc.grid.sara.nl:8085";
]
 };
 DataAccessProtocol = {"gsiftp"};

 RetryCount = 3;
]

This JDL mentions the script scriptInputData.sh (as value of Arguments) which will be submitted to the WMS, and run on a Worker Node. This script needs an inputfile, and expects an LFN as argument. We will use the file that we copied to an SE earlier. In the DataRequirements section, we mention the LFN of this file as value of InputData. Notice that the DataCatalogType and DataCatalog are also described. You can copy these values.

Note that this in itself is not enough for the script to use the file. It still needs to be copied to the worker node where the job lands. All that is achieved by this JDL description is that the job will land close to an SE which contains the needed data. The copying is done by the script itself. To actually copy the file associated with this LFN from the SE to the WN, the script uses an lcg-cp command. The script scriptInputData.sh is shown below.

The script gets the file, performs the ls command and shows the content of the file to stdout.

$ cat scriptInputData.sh
#!/bin/sh

Set the proper environment
export LFC_HOST=lfc.grid.sara.nl
export LCG_GFAL_INFOSYS=bdii.grid.sara.nl:2170
export LCG_CATALOG_TYPE=lfc

Download the file from the SE to the WN where this job runs
note that the LFN is passed as input to this script
lcg-cp --vo lsgrid $1 file:`pwd`/local_file

echo "##"
ls -la local_file
echo "##"
type the file just downloaded
cat local_file

Now the actual submission, status checking, output retrieval and inspection can take place. If you want to try this example, you have to create two files, inputdata.jdl and scriptInputData.sh, filling them with the content displayed above. Of course, you have to register your own file and consequently change the LFN requested within the DataRequirements attribute.

Moving output data from the job to the SE

What do you do when you have to move data from a running job on the Worker Node to a Storage Element? The answer is: the job has to do it by having a script copy the data. We give an example. Assume that the following script code is executed by a running job.

$ cat registeringfile-script.sh
#!/bin/sh
Author : Emidio Giorgio
Usage : register a file to the default SE, with a specified LFN
- The file to copy and register is passed as first input argument to the script ($1)
- The logical file name it will have is the second input argument to the script ($2)
- the LFN will be like this /grid/lsgrid/YOUR_DIRECTORY/$2

Set the proper environment
export LFC_HOST=lfc.grid.sara.nl
export LCG_GFAL_INFOSYS=bdii.grid.sara.nl:2170
export LCG_CATALOG_TYPE=lfc

Actually upload the file to the SE
path to the file to be registered is built as {current path}/{relative path from this script to filename}
REPLACE CHANGEME with an (already existing) LFC directory of your choice
lcg-cr --vo lsgrid -l lfn:/grid/lsgrid/CHANGEME/$2 file:$PWD/$1

This script is in charge of copying the output of your job. The simplest thing is to run it from within the main job script, as shown below:

$ cat scriptWhichDoesSomething.sh
#!/bin/sh

do whatever
echo "This is a very dummy test" > fileout.txt

run the script which registers the file fileout.txt just created above
/bin/sh registeringfile-script.sh fileout.txt data_from_the_WN

greetings
echo "All done correctly (I hope). Bye bye"

This could be a starting point for your JDL:

$ cat JobWritingToSE.jdl
[
 Executable = "/bin/sh";
 Arguments = "scriptWhichDoesSomething.sh";

 StdOutput = "std.out";
 StdError = "std.err";

 # carry out also the script which registers the file
 InputSandbox = {"scriptWhichDoesSomething.sh","registeringfile-script.sh"};
 OutputSandbox = {"std.out","std.err"};
]

Alternatively, you can just append the content of registeringfile-script.sh to your main script.

Data migration

This page explains how to migrate your data from your local LSG (Life Science Grid) cluster to Cartesius. Since the file systems of your local LSG cluster and Cartesius are separate, you cannot directly access the Cartesius home file system from LSG, or vice versa. However, you can use rsync to copy data between these file systems over the network. Here you will find instructions on how to copy data files/directories from LSG to Cartesius.

Contents

	Data migration

	Prerequisites

	Copy your data from LSG to Cartesius

	1. Login into your LSG cluster as normally

	2. Clean up

	3. Transfer your data

	4. Check your data on Cartesius

	5. Data validation

	Useful links

Prerequisites

In order to start the data migration it is necessary to have the following accounts:

	Account to an LSG cluster. This is your existing personal login to access your local LSG cluster.

	Account to Cartesius. This is a new login that was created for you to access Cartesius. NB: the account is provided only to the active LSG users who asked for a replacement platform in the questionnaire [https://userinfo.surfsara.nl/documentation/decommissioning-life-science-grid#heading5].

You will use the same username and password to access both the LSG cluster and Cartesius. In the instructions below you will access Cartesius directly from the UI (user interface machine) of your local LSG site. We have arranged access to Cartesius from all the LSG clusters. In case that you have problems accessing Cartesius outside the LSG clusters see here [https://userinfo.surfsara.nl/systems/cartesius/faq#heading3].

Copy your data from LSG to Cartesius

1. Login into your LSG cluster as normally

You can start a transfer from an LSG site on Cartesius by logging on to your local LSG cluster (via SSH). Once you are logged in you can initiate a connection to Cartesius in order to push the data you require. Log in to your LSG UI (User Interface):

	The generic syntax is:

$ssh [USER@]HOST

, where USER is your username and HOST is the UI address of your local cluster (you can find the hostname in the list of LSG hostnames).

	Here is an example:

$ssh homer@gb-ui-kun.els.sara.nl

, where homer is the USER and gb-ui-kun.els.sara.nl is the HOST at the LSG-KUN cluster.

2. Clean up

Before initiating the data transfer, you should remove all data that you do not intend to keep. This data can be stored in your HOME (/home/$USER) or NOBACKUP (/home/nobackup/$USER) directory. There are good reasons to clean up unnecessary data before you start the migration; less data means faster copying process. Also every user has his own home directory on Cartesius with default capacity quota of 200GiB and your data has to fit into this limit. You can remove the files that you don’t need to keep with the rm unix command.

3. Transfer your data

Once you have selected which data you want to keep (and removed the rest), you can start the data transfer to Cartesius by using two powerful tools: screen and rsync. The screen tool makes sure your copying process continues when you accidentally lose connection to the server. The rsync tool is a file synchronisation and file transfer program that can minimise network data transfer such that only the differences between and source and destination data are actually transmitted.

You will typically transfer data from your LSG HOME (/home/$USER) or NOBACKUP (/home/nobackup/$USER) directory to your Cartesius HOME (/home/$USER) or Project space (/projects/0/PROJECT) that you have been granted access to.

	On the LSG UI start screen by typing the word screen and then ‘ENTER’, e.g.:

$gb-ui-kun.els.sara.nl:/home/homer
$homer$ screen #hit 'Enter'

NB: In case that you lose connection during the transfer, login the LSG UI again and use screen -r to reattach your session and return to your transfer.

	Start transferring your data from LSG to Cartesius with rsync:

	The generic syntax is:

$rsync [OPTION] ... SRC [SRC] ... [USER@]HOST:DEST

, where SRC is the local file or directory (or a list of multiple files and directories) to copy from, and DEST represents the remote file or directory to copy to.

	Here is an example:

$rsync -aP ~/* cartesius.surfsara.nl:~ # hit 'ENTER', type your password and hit 'ENTER' again to start copying

, where ~/* is the SRC (all of my home data left after cleaning up) and cartesius.surfsara.nl:~ is the HOST:DEST directory in my Cartesius account.

You can use the same command to copy files from other locations on your LSG-UI, e.g. the NOBACKUP (/home/nobackup/$USER) directory by replacing [SRC] with the location that your data is stored.

NB: If rsync fails you can rerun the same command; the transfer of the data will continue where it stopped because rsync will synchronise files and directories between your LSG folders and Cartesius system. While copying, please do not alter files to prevent accidental loss of files due to mixing up of systems.

4. Check your data on Cartesius

When copying is done, please check your data on Cartesius before deleting the data from the LSG. You can access your Cartesius account to inspect your files:

	The generic syntax is:

$ssh [USER@]cartesius.surfsara.nl

, where USER is your username

	Here is an example:

$gb-ui-kun.els.sara.nl:/home/homer
$homer$ ssh homer@cartesius.surfsara.nl

	To disconnect simply type

$logout # hit 'Enter' after this command

5. Data validation

If you want to validate the integrity of the data that you have migrated on Cartesius then we recommend you the following options:

	On the LSG UI, apply once again the rsync command that you used to copy your data to Cartesius. If all the files have been transferred correctly you should receive an empty list, e.g.:

$rsync -aP ~/* cartesius.surfsara.nl:~
##sending incremental file list
##<empty>

	On both the LSG UI and the Cartesius UI, check the total size of all your files. Due to the different filesystems (blocksize) between the LSG UI and Cartesius, the standard du command would return different sizes for the same data on the two systems. Therefore, we suggest you run the following long command in both the systems. The result number should be the same in both systems:

$gb-ui-kun.els.sara.nl:/home/homer # source is the LSG UI
$homer$ find ./* -type f -print0 | xargs -0 ls -l | awk '{print $5;}' | paste -s -d+ | bc
##103096205

$cartesius.surfsara.nl:/home/homer # destination is the Cartesius UI
$homer$ find ./* -type f -print0 | xargs -0 ls -l | awk '{print $5;}' | paste -s -d+ | bc
##103096205

	The best way to validate your data is calculating the checksum of each file and comparing it with the checksum of the copied files. Please note that depending on the amount of your files and their sizes, this operation can be computationally expensive and may take a long time. Here is an example:

$gb-ui-kun.els.sara.nl:/home/homer # source is the LSG UI
$homer$ find ./* -type f | xargs md5sum > md5sums.txt # it calculates the md5sum of all the files and stores it in a text file
$homer$ rsync -aP ~/* cartesius.surfsara.nl:~ # run rsync to copy the md5sums.txt file too
##sending incremental file list
##md5sums.txt

$cartesius.surfsara.nl:/home/homer # destination is the Cartesius UI
$homer$ md5sum -c md5sums.txt

All the files should be marked ‘OK’. In case that there are any checksums that do not match in the two systems then you can check which files failed to match the checksum with:

##md5sum: WARNING: 1 computed checksum did NOT match
$homer$ md5sum -c md5sums.txt | grep FAILED
##./myfile: FAILED

Useful links

	Up-to-date information about the LSG decommissioning can be found here [https://userinfo.surfsara.nl/documentation/decommissioning-life-science-grid].

	The deadline and overall planning for the data migration can be found here [https://userinfo.surfsara.nl/documentation/decommissioning-life-science-grid#heading6].

	Information about the Cartesius supercomputer can be found here [https://userinfo.surfsara.nl/systems/cartesius/description].

	Any questions on the data migration procedure? Please ask at helpdesk@surfsara.nl.

How to use the storage on the Grid nodes

In this page you will learn the principles when using the local storage on the Grid worker nodes within your Grid jobs.

Contents

	How to use the storage on the Grid nodes

	Problem description

	Using the /scratch

Problem description

When you submit a job to the Grid site at SURFsara, it will land on one of the Gina nodes. On the worker node, your job can use the local /scratch directory for storing data that is required during the job execution.

The local /scratch directory is a temporary file space that is shared across the entire worker node and it is ideal for applications that deal with large volumes of data and require high throughput processing.

However, the /scratch space on the worker node should be used with caution. Your data should be written in your job’s /scratch subdirectory and not directly under the /scratch. This practice prevents from filling up the worker node storage which would lead in blocking new jobs or failures on running jobs on the node.

In the example below we explain how to use /scratch efficiently.

Using the /scratch

The worker node /scratch storage is not directly accessible by the UI or other remote machines. You can access scratch only within your job scripts executed on the worker node. To make good use of the local /scratch you should adapt your job scripts to:

	create a temporary directory under your job directory for storing the job data before the analysis starts

	effectively remove the temporary directory once the analysis ends and before your job exits

When you submit a job to the Grid, it creates a unique job directory once it lands on a worker node. The job directory format is /scratch/XXX.batch.gina.sara.nl/CREAMXXX,
where ‘XXX’ is your job identifier. Creating a temporary directory under this partition helps to collect the generated data by a particular job in a single directory.

The following code block is an example for creating the temporary directory within your job and removing it effectively after the analysis ends:

JOBDIR=${PWD} #the job lands here
echo $JOBDIR
#/scratch/20372174.batch.gina.sara.nl/CREAM20372174

RUNDIR=`mktemp -d -p ${JOBDIR}` #create a temporary working directory on scratch
echo $RUNDIR
#/scratch/20372174.batch.gina.sara.nl/CREAM20372174/tmp.nCXtOkxcr8

cd ${RUNDIR} #move to the working directory
#copy your data here
#run the analysis

cd ${JOBDIR} #once analysis ends, move the the dir where the job landed
rm -rf ${RUNDIR} #remove the temp dir and all of the generated data before exiting the job
exit 0

Note

There is an environment variable set on the worker nodes called $TMPDIR that points to /scratch. Do not use the command mktemp -d -p ${TMPDIR} to create the temporary directory because it will create directly a first level directory under /scratch (i.e. /scratch/tmp.nCXtOkxcr8) which will be regularly checked and deleted for our system healthiness.

Creamce job submission

In this page we present the Creamce job submission as an alternative to the Workload Management System (WMS) job submission to the Grid. We first discuss the need to use the Creamce instead of WMS, then we briefly recap the basic WMS commands (glite-wms) and the corresponding Creamce commands (glite-ce). We also present the differences regarding the JDL file setup and show an example Grid job submitted directly to the Creamce.

Contents

	Creamce job submission

	WMS decommissioning

	Creamce vs. WMS commands

	JDL differences

	Direct Creamce job submission and lifecycle

	Proxy creation

	Job submission

	Job status

	Job output retrieval

	Job cancellation

WMS decommissioning

More about the WMS?

See also

The WMS is responsible for distributing and managing tasks across the different compute and storage resources available on a Grid. Check out the WMS job submission in First Grid job

The gLite Workload Management System (WMS) software is no longer officially supported since 2018. It is therefore unavoidable that the SURFsara WMS servers (wms1.grid.sara.nl and wms2.grid.sara.nl) will be decommissioned sometime in the future. This will lead to changes for Grid users who carry out the job submission, monitoring and retrieval using the glite-wms commands. As alternatives to the WMS, we suggest the following options:

	Direct job submission to the Creamce. This option is recommended to users who submit their jobs to specific Grid clusters (known endpoints), e.g. directly to Gina.

	Migrating to the DIRAC [http://diracgrid.org/] service. This option is recommended to users who use multiple Grid clusters in multiple locations, where the actual endpoints might not be known. DIRAC is a tool that provides features very similar to the WMS.

In this page we show a few examples to help you with the transition to the Creamce job submission. If you are interested in DIRAC, please contact us at helpdesk@surfsara.nl to discuss about the possibilities for your VO.

Creamce vs. WMS commands

The direct job submission to the CREAMCE is handled through glite-ce commands. Below we list the relevant glite-ce commands corresponding to the most common glite-wms commands.

More about Creamce commands?

See also

The glite-ce commands belong to the command line interface (CLI) for interacting with CREAM and are described in more detail in the Cream guide [http://cream-guide.readthedocs.io/en/latest/User_Guide.html].

$glite-wms-job-submit -> glite-ce-job-submit
$glite-wms-job-status -> glite-ce-job-status
$glite-wms-job-cancel -> glite-ce-job-cancel
$glite-wms-job-output -> glite-ce-job-output

	On the command line, for both glite-ce and glite-wms commands, help is available via:

$ <command> --help

JDL differences

There are a few differences in the JDL syntax between the WMS and the Creamce job submission. Most important is the specification of the OutputSandbox and the queue to submit the job. See the examples here:

Suppose that we want to submit the following wrapper.sh script, which is stored in our local sandbox folder, to the medium (36h) queue of Gina (see Queues):

#!/bin/bash
echo `date`
echo ${HOSTNAME}
echo ${PWD}
sleep 30
ls -allh ${PWD}
exit 0

Then we create a JDL to submit the simple job above to the Gina (see Gina specifications) Grid cluster. The JDL for the WMS would look like this:

	glite-wms: your_wms_job.jdl

[
JobType = "Normal";
Executable = "wrapper.sh";
InputSandbox = {"sandbox/wrapper.sh"};
Stdoutput = "stdout";
StdError = "stderror";
OutputSandbox = {"stdout", "stderror"};
RetryCount = 0;
ShallowRetryCount = 0;
Requirements=(RegExp("gina.sara.nl:8443/cream-pbs-medium", other.GlueCEUniqueID));
]

In order to submit the job directly to the Creamce, the JDL looks like this:

	glite-ce: your_ce_job.jdl

[
JobType = "Normal";
Executable = "wrapper.sh";
InputSandbox = {"sandbox/wrapper.sh"};
Stdoutput = "stdout";
StdError = "stderror";
OutputSandbox = {"stdout", "stderror"};
OutputSandboxBaseDestURI = "gsiftp://localhost";
RetryCount = 0;
ShallowRetryCount = 0;
]

Note that in the Creamce JDL we have removed the line that specifies the queue because it will be specified with the job submission command and we have changed the OutputSandbox destination to the OutputSandboxBaseDestURI from where we will retrieve the output as shown in the next section.

Direct Creamce job submission and lifecycle

Once we have prepared the JDL and the job scripts, we are ready to submit the job. Here are the steps to submit the job directly to the Creamce. All the steps include an example to the equivalent WMS operations:

Proxy creation

First create a local proxy on the UI:

$voms-proxy-init --voms lsgrid --valid 168:00

Note

The Creamce job submission lacks the WMS feature that takes care of the proxy delegation and extension (see Grid authentication). This means that your proxy on the Creamce will be valid for 24 hours and your jobs will be killed after this time. We are looking into options for the proxy extension to provide the same functionality as the startGridSession command.

Job submission

	Submitting the job with the WMS would look like this:

$ glite-wms-job-submit -d $USER your_wms_job.jdl
 Your job identifier is:
 https://wms2.grid.sara.nl:9000/HnMrnxuzXWuM--JDXM8-pw

	In order to submit the job directly to the Creamce medium queue, the command looks like this:

$ glite-ce-job-submit -a -r creamce.gina.sara.nl:8443/cream-pbs-medium your_ce_job.jdl
 https://creamce.gina.sara.nl:8443/CREAM887592310

Job status

	Getting the job status with the WMS would look like this:

$ glite-wms-job-status https://wms2.grid.sara.nl:9000/HnMrnxuzXWuM--JDXM8-pw
 ...
 Status info for the Job : https://wms2.grid.sara.nl:9000/HnMrnxuzXWuM--JDXM8-pw
 Current Status: Done(Success)
 ...

Please note that all possible Status states are (e.g. $ glite-wms-job-status --help):

UNDEF, SUBMITTED, WAITING, READY, SCHEDULED, RUNNING, DONE, CLEARED, ABORTED, CANCELLED, UNKNOWN, PURGED

	In order to get the status of a job that is submitted directly to the Creamce, run this command:

$ glite-ce-job-status -L 2 https://creamce.gina.sara.nl:8443/CREAM887592310

 ****** JobID=[https://creamce.gina.sara.nl:8443/CREAM887592310]
 Current Status = [DONE-OK]
 ...

 Job status changes:

 Status = [REGISTERED] - [Thu 07 Jun 2018 10:42:27] (1528360947)
 Status = [PENDING] - [Thu 07 Jun 2018 10:42:28] (1528360948)
 Status = [IDLE] - [Thu 07 Jun 2018 10:42:28] (1528360948)
 Status = [RUNNING] - [Thu 07 Jun 2018 10:45:35] (1528361135)
 Status = [REALLY-RUNNING] - [Thu 07 Jun 2018 10:45:41] (1528361141)
 Status = [DONE-OK] - [Thu 07 Jun 2018 10:46:44] (1528361204)
 ...

The above information is an excerpt of the stdout output (command line) that is generated by the job-status call. In particular we show here the sequence of ‘Status’ for a successful job.

Please note that all possible Status states are (e.g. glite-ce-job-status --help):

DONE-OK, DONE-FAILED, REGISTERED, PENDING, IDLE, RUNNING, REALLY-RUNNING, HELD, CANCELLED, ABORTED, UNKNOWN

Job output retrieval

	
	Getting the job output with the WMS would look like this:
	$ glite-wms-job-output https://wms2.grid.sara.nl:9000/HnMrnxuzXWuM--JDXM8-pw

 Connecting to the service https://wms2.grid.sara.nl:7443/glite_wms_wmproxy_server

 Job's DN is different from that one contained in your proxy file. GridFTP could
 be unable to retrieve the output file. Do you want to continue (JobPurge will
 be disabled) ? [y/n]n : y

 ==

 JOB GET OUTPUT OUTCOME

 Output sandbox files for the job:
 https://wms2.grid.sara.nl:9000/HnMrnxuzXWuM--JDXM8-pw
 have been successfully retrieved and stored in the directory:
 /scratch/oonk_HnMrnxuzXWuM--JDXM8-pw

 ==

Note1: the Job DN question is asked and has to be answered with ‘y’ due to a bug in WMS.
Note2: to retrieve the output the parameter ‘OutputSandboxBaseDestURI’ should not be set.
Note3: instead of /scratch one can use the option –dir to specify an output directory.

	In order to get the output of a job that is submitted directly to the Creamce, run this command:

$ glite-ce-job-output https://creamce.gina.sara.nl:8443/CREAM887592310

2018-06-07 10:54:28,881 INFO - For JobID [https://creamce.gina.sara.nl:8443/
 CREAM887592310] output will be stored in the dir
 ./creamce.gina.sara.nl_8443_CREAM887592310

$ ls ./creamce.gina.sara.nl_8443_CREAM887592310/
 stderror stdout

We see here that the stdout and stderror files, as specified in your_ce_job.jdl, are retrieved and saved to this local directory.

Job cancellation

Here we show an example in case you want to cancel a job after having submitted it.

	Cancelling a job with the WMS would look like this:

$ glite-wms-job-cancel https://wms2.grid.sara.nl:9000/_XLil1T3EEIVCmDnWY-tmA

 Are you sure you want to remove specified job(s) [y/n]y : y

$ glite-wms-job-status https://wms2.grid.sara.nl:9000/_XLil1T3EEIVCmDnWY-tmA

======================= glite-wms-job-status Success =====================
BOOKKEEPING INFORMATION:

Status info for the Job : https://wms2.grid.sara.nl:9000/_XLil1T3EEIVCmDnWY-tmA
Current Status: Cancelled
...

	In order to cancel a job that is submitted directly to the Creamce, run this command:

$ glite-ce-job-cancel https://creamce.gina.sara.nl:8443/CREAM423808807

 Are you sure you want to cancel specified job(s) [y/n]: y

$ glite-ce-job-status https://creamce.gina.sara.nl:8443/CREAM423808807

****** JobID=[https://creamce.gina.sara.nl:8443/CREAM423808807]
 Status = [CANCELLED]
 ExitCode = []
 Description = [Cancelled by user]
...

Parametric jobs

The pilot jobs use the technique of parametric jobs for the job submission to the Grid. In this page we give an example of parametric jobs:

Contents

	Parametric jobs

	About

	Example

About

Pilot jobs are submitted to the Grid with a specific Job Description Language type called Parametric. A parametric job causes a set of jobs to be generated from one JDL file.

Example

In the example below, the parametric job will create 3 child jobs (see line 4) that will all run the same executable (see line 6). The value _PARAM_ will be replaced by the actual value of Parameters during the JDL expansion.

ParameterStart defines the starting value for the variation, ParameterStep the step for each variation and Parameters defines the value where the submission of jobs will stop (that value itself is not used) . The number of jobs is:
(Parameters – ParameterStart) / ParameterStep

	Log in to your User Interface.

	Create a file with the following content describing the job requirements. Save it as parametric.jdl:

 1JobType = "Parametric";
 2ParameterStart=0;
 3ParameterStep=1;
 4Parameters=3;
 5
 6Executable = "/bin/hostname";
 7Arguments = "-f";
 8StdOutput = "std_PARAM_.out";
 9StdError = "std_PARAM_.err";
10OutputSandbox = {"std_PARAM_.out","std_PARAM_.err"};

	You can submit the parametric job as any Grid job:

$glite-wms-job-submit -d $USER -o jobIds parametric.jdl

In this case, 3 child jobs will be generated. Each job will generate two files: std0.out and std0.err, std1.out and std1.err, std2.out and std2.err.

	Monitor the job status to see the the parent job URL and the 3 child jobs URLs with their status:

$glite-wms-job-status -i jobIds

======================= glite-wms-job-status Success =====================
BOOKKEEPING INFORMATION:

Status info for the Job : https://wms2.grid.sara.nl:9000/3ii77P1aSSTKue-MkT_y9g
Current Status: Running
Submitted: Sat Jan 4 12:54:56 2016 CET
==

- Nodes information for:
 Status info for the Job : https://wms2.grid.sara.nl:9000/0OZYR142AXspdm807L6YWA
 Current Status: Running
 Status Reason: unavailable
 Destination: ce.lsg.bcbr.uu.nl:8443/cream-pbs-express
 Submitted: Sat Jan 4 12:54:56 2016 CET
==

 Status info for the Job : https://wms2.grid.sara.nl:9000/9uO8Hp6H3qCBAK3abx7G4A
 Current Status: Running
 Status Reason: unavailable
 Destination: gb-ce-amc.amc.nl:8443/cream-pbs-express
 Submitted: Sat Jan 4 12:54:56 2016 CET
==

 Status info for the Job : https://wms2.grid.sara.nl:9000/CVYq7F6lqokBvJvsfU4ELw
 Current Status: Running
 Status Reason: unavailable
 Destination: gb-ce-lumc.lumc.nl:8443/cream-pbs-express
 Submitted: Sat Jan 4 12:54:56 2016 CET
==

This is just an example. In practice you shouldn’t send more than 50 jobs this way (Parameters=50). The parametric jobs is the technology used for submitting the pilot jobs. There is no need to monitor their status or retrieve the job output through the WMS as the pilot frameworks will take care of this.

Picas Change Password

You can change your Picas password from command line using your existing
credentials with the following steps:

	Open a terminal in your local machine

	Provide your current username, password and the new password as variables and run the command below:

username=USERNAME
password=PASSWORD
newpassword=NEWPASSWORD
curl --silent --user "$username:$password" -X GET https://picas.surfsara.nl:6984/_users/org.couchdb.user:$username | jq '._rev' | curl --user "$username:$password" -X PUT https://picas.surfsara.nl:6984/_users/org.couchdb.user:$username -H "Accept: application/json" -H "Content-Type: application/json" -H "If-Match:$(</dev/stdin)" -d '{"name":"'$username'", "roles":[], "type":"user", "password":"'$newpassword'"}'

Upon success you should receive an output like the following:

{"ok":true,"id":"org.couchdb.user:USERNAME","rev":"2-5a3c7133701e51sfgh32cb0b3761483d"}

Picas Changes 1 to 3

The Picas server has been migrated from CouchDB version 1.7.1 to CouchDB version 3.3.2. The new CouchDB version offers new features and optimisations.
Here is a summary of some changes that may affect user functionalities.

	Change

	CouchDB 1.x

	CouchDB 3.x

	Web interface

	Futon interface

	Fauxton new enhanced interface

	Views

	Views located on top right drop-down button

	Views located in left pane under Design Documents

	Map/Reduce

	Located at top right ‘reduce’ checkbox

	‘Options’, click radio button ‘Reduce’, select ‘Group Level: Exact’, hit Run Query

	New account

	Sign up from web interface enabled

	Sign up from web interface disabled

	Password change

	Enabled from web interface

	Only possible from command line

	Remove documents

	Using purge function from couchdb

	Purge no longer supported. Use delete function

	Database compaction

	Enabled for users from the web interface

	Disabled for users. Aplied from server configuration

	Attachment size

	Configurable

	Maximum attachment size has been set to 1GiB per document

Picas Example

This page presents a PiCaS pilot job example:

Contents

	Picas Example

	Problem description

	Prerequisites

	Picas sample example

	Prepare your Tokens

	Create the Tokens

	Upload your Tokens to the PiCaS server

	Run the example locally

	Run the example on the Grid

	Checking failed jobs

Problem description

More about Picas in practice?

See also

Check out our mooc videos Picas examples Part I and Part II.

In this example we will implement the following pilot job workflow:

	First we define and generate the application tokens with all the necessary parameters.

	Then we define and create a shell script to process one task (process_task.sh) that will be sent with the job using the input sandbox. This contains some boiler plate code to e.g. setup the environment, download software or data from the Grid storage, run the application etc. This doesn’t have to be a shell script, however, setting up environment variables is easiest when using a shell script, and this way setup scripts are separated from the application code.

	We also define and create a Python script to handle all the communication with the token pool server, call the process_task,sh script, catch errors and do the reporting.

	Finally we define the JDL on the User Interface machine to specify some general properties of our jobs. This is required to submit a batch of pilot jobs to the Grid that will in turn initiate the Python script as defined in the previous step.

Prerequisites

To be able to run the example you must have:

	All the three Grid Prerequisites (User Interface machine, Grid certificate, VO membership)

	An account on PiCaS server (send your request to <helpdesk@surfsara.nl>)

Picas sample example

	Log in to the UI and download the pilot_picas_fractals.tgz example, the couchdb package for Python couchdb.tgz and the fractals source code fractals.c.

	Untar pilot_picas_fractals.tgz and inspect the content:

$tar -xvf pilot_picas_fractals.tgz
$cd pilot_picas_fractals/
$ls -l
-rwxrwxr-x 1 homer homer 1247 Jan 28 15:40 createTokens
-rw-rw-r-- 1 homer homer 1202 Jan 28 15:40 createTokens.py
-rw-rw-r-- 1 homer homer 2827 Jan 28 15:40 createViews.py
-rw-rw-r-- 1 homer homer 462 Jan 28 15:40 fractals.jdl
drwxrwxr-x 2 homer homer 116 Jan 28 15:40 sandbox

Detailed information regarding the operations performed in each of the scripts below is embedded to the comments inside each of the scripts individually.

	Also download the current PiCaS version picas.tar and put both PiCaS and the couchdb.tgz file in the sandbox directory:

$cd sandbox
$mv ../../couchdb.tgz ./

	And finally compile the fractals program (and put it in the sandbox directory) and move one directory up again:

$cc ../../fractals.c -o fractals -lm
$cd ..

The sandbox directory now holds everything we need to send to the Grid worker nodes.

Prepare your Tokens

Create the Tokens

This example includes a bash script (./createTokens) that generates a sensible parameter file, with each line representing a set of parameters that the fractals program can be called with. Without arguments it creates a fairly sensible set of 24 lines of parameters. You can generate different sets of parameters by calling the program with a combination of -q, -d and -m arguments, but at the moment no documentation exists on these. We recommend not to use them for the moment.

	After you ran the createTokens script you’ll see output similar to the following:

$./createTokens
/tmp/tmp.fZ33Kd8wXK
$cat /tmp/tmp.fZ33Kd8wXK

Upload your Tokens to the PiCaS server

Now we will start using PiCaS. For this we need the downloaded CouchDB and PiCaS packages for Python and set the hostname, database name and our credentials for the CouchDB server:

	Edit sandbox/picasconfig.py and set the PiCaS host URL, database name, username and password.

	Link the picasconfig.py file in the current directory. This makes it available for the scripts that need to upload the tokens to CouchDB:

$ln sandbox/picasconfig.py

	Make the CouchDB package locally available:

$tar -xvf sandbox/couchdb.tgz

	Upload the tokens:

$python createTokens.py /tmp/tmp.fZ33Kd8wXK

	Check your database in this link:

https://picas.surfsara.nl:6984/_utils/database.html?homerdb

replace homerdb with your Picas database name

	Create the Views (pools) - independent to the tokens (should be created only once):

$python createViews.py

Run the example locally

	If you submit the jobs on the UI, the job will start fetching tokens from the pool server and run the application locally on the UI machine:

$cd sandbox/
$./startpilot.sh

Connected to the database homerdb sucessfully. Now starting work...

Working on token: token_2
lock 1453570581
_rev 2-8d7f141114b7335b50612ba4dfb92b3d
hostname ui
exit_code
scrub_count 0
done 0
input -q 0.100 -d 256 -m 8400
output
_id token_2
type token

/usr/bin/time -v ./process_task.sh "-q 0.100 -d 256 -m 8400" token_2 2> logs_token_2.err 1> logs_token_2.out

Working on token: token_6
lock 1453570589
...

You can monitor the progress for the Tokens that are waiting, running, finished or in error state, from the PiCaS website here:

https://nosql01.grid.sara.nl:6984/_utils/database.html?homerdb

replace homerdb with your Picas database name

While the UI has started processing tokens, submit the pilot jobs to the Grid. Continue to the next section …

Run the example on the Grid

	Create a proxy:

$startGridSession lsgrid # replace lsgrid with your VO

	Submit the pilot jobs:

$glite-wms-job-submit -d $USER -o jobIDs fractals.jdl

It will recursively generate an image based on parameters received from PiCas. At this point, some of your tokens are processed on the Grid worker nodes and some of the tokens are already processed on the UI. Note that the UI is not meant for production runs, but only for testing few runs before submitting the pilot jobs to the Grid.

	Convert the UI output file to .png format and display the picture:

$convert output_token_6 output_token_6.png # replace with your output filename

For the tokens that are processed on Grid, you can send the output to the Grid Storage or some other remote location.

Checking failed jobs

While your pilot jobs process tasks, you can keep track of their progress through the CouchDB web interface. There are views installed to see:

	all the tasks that still need to be done (Monitor/todo)

	the tasks that are locked (Monitor/locked)

	tasks that encountered errors (Monitor/error)

	tasks that are finished (Monitor/done)

When all your pilot jobs are finished, ideally, you’d want all tasks to be ‘done’. However, often you will find that not all jobs finished successfully and some are still in a ‘locked’ or ‘error’ state. If this happens, you should investigate what went wrong with these jobs. Incidentally, this will be due to errors with the Grid middleware, network or storage. In those cases, you can remove the locks and submitting some new pilot jobs to try again. In other cases, there could be errors with your task: maybe you’ve sent the wrong parameters or forgot to download all necessary input files. Reviewing these failed tasks gives you the possibility to correct them and improve your submission scripts. After that, you could run those tasks again, either by removing their locks or by creating new tokens if needed and then submitting new pilot jobs.

ProjectMine: Install software to copy files

This page is about ProjectMine:

Contents

	ProjectMine: Install software to copy files

	Install the gridFTP software stack

	Network

	Software

	CentOS specific

	Ubuntu specific

	Install on Linux without administative rights

	SRM tools

	Install Certificates

	Install VOMS locations

	create a vomsified proxy

Install the gridFTP software stack

Network

Our storage servers are located at ip 145.100.32.0/22 and needs for gridftp port 2811 and the port range 20000-25000 and for SRM protocol port 8443

Software

The software stack used for gridftp and all it’s necessary dependencies are developed to work with CentOS or Scientific Linux. Most stable resuts can be expected with these software distributions. However, this software can also be run on Debian(ubuntu), MacOS and all other distributions. Keep that the experience might be sub optimal.

CentOS specific

sudo yum install epel-release

sudo wget -O /etc/yum.repos.d/EGI-trustanchors.repo http://repository.egi.eu/sw/production/cas/1/current/repo-files/EGI-trustanchors.repo

sudo yum update

sudo yum install globus-gass-copy-progs voms-clients uberftp fetch-crl

//All EGI root certificates

sudo yum install ca-policy-egi-core

// or only the specific needed certs (which can be troublesum)

yum install ca_TERENA-eScience-SSL-CA-2.noarch ca-terena-escience-ssl-ca-3 ca_NIKHEF

Installing the SRM client

wget https://www.dcache.org/downloads/1.9/repo/2.10/dcache-srmclient-2.10.7-1.noarch.rpm

yum install dcache-srmclient-2.10.7-1.noarch.rpm

After installing continue with Install VOMS locations

Ubuntu specific

curl https://dist.eugridpma.info/distribution/igtf/current/GPG-KEY-EUGridPMA-RPM-3 | sudo apt-key add -
sudo su

wget http://www.globus.org/ftppub/gt6/installers/repo/globus-toolkit-repo_latest_all.deb

sudo dpkg -i globus-toolkit-repo_latest_all.deb

echo "deb http://repository.egi.eu/sw/production/cas/1/current egi-igtf core" >>/etc/apt/sources.list

sudo apt-get update

sudo mkdir -p /etc/grid-security/certificates/

sudo apt-get install ca-policy-egi-core globus-gass-copy-progs voms-clients fetch-crl

Please also install the SRM client software

Install on Linux without administative rights

prerequisites:

	64 bit Linux on a x86 architecture

	Java 7 or 8

Install globus-url-copy

wget -O globus_tookit.tar.gz http://toolkit.globus.org/ftppub/gt6/installers/linux/globus_toolkit-6.0.1452806916-x86_64-unknown-linux-gnu-Build-164.tar.gz
tar --strip-components=1 -xvf globus_tookit.tar.gz
export PATH=$(pwd)/globus/bin:$PATH

Install srm-client

wget -O srm-client.tar.gz https://www.dcache.org/downloads/1.9/repo/2.10/srm-client-2.10.7.tar.gz
tar -xvf srm-client.tar.gz
export PATH=$PATH:$(pwd)/srm-client-2.10.7/bin/

For installing the voms-clients, you need to install the java build tool maven (you can skip this when the command mvn is installed)

wget -O maven.tar.gz http://apache.mirror.triple-it.nl/maven/maven-3/3.3.9/binaries/apache-maven-3.3.9-bin.tar.gz
tar -xf maven.tar.gz
export PATH=$PATH:$(pwd)/apache-maven-3.3.9/bin/

Install voms-client itself

wget -O voms-clients.tar.gz https://github.com/italiangrid/voms-clients/archive/v3.0.6.tar.gz
tar -xf voms-clients.tar.gz
cd voms-clients-3.0.6
mvn package
mv target/voms-clients.tar.gz ../.
cd ..
rm -rf voms-clients-3.0.6
tar -xvf voms-clients.tar.gz
export PATH=$PATH:$(pwd)/voms-clients/bin/

MacOS X specific

Installing the software is done via Homebrew, a software manager for MacOS X. More information on homebrew can be found at http://brew.sh/

ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"
brew install uberftp voms globus-toolkit wget

SRM tools

The SRM tools are needed to communicate with the storage management system and used for querying information about files and bring files online from the tape archive.

	Admin rights

wget -O srm-client.tar.gz https://www.dcache.org/downloads/1.9/repo/2.10/srm-client-2.10.7.tar.gz
tar --strip-components=1 -xvf srm-client.tar.gz
cp bin/* /usr/bin/.
cp -r share/srm /usr/share/.

	User rights

wget -O srm-client.tar.gz https://www.dcache.org/downloads/1.9/repo/2.10/srm-client-2.10.7.tar.gz
tar -xvf srm-client.tar.gz
export PATH=$PATH:$(pwd)/srm-client-2.10.7/bin/

Install Certificates

These instructions are not necessary if you installed with the CentOS and Ubuntu method.

export X509_CERT_DIR=$(pwd)/grid-security/certificates
mkdir -p $X509_CERT_DIR
cd $X509_CERT_DIR
wget -r -l1 --no-parent -nd --accept=.tar.gz "http://repository.egi.eu/sw/production/cas/1/current/tgz/"
for i in `ls *.tar.gz`; do tar xzf $i --strip-components=1; done
rm -vf robots.txt *.tar.gz
cd ../..

Install VOMS locations

These files are needed to find the VOMS server when you create a vomsified proxy. When installing VOMS locations without admin rights a warning will be shown when creating a vomsified because no lsc file is set: this give no functional limitations

	
	User rights
	mkdir -p $HOME/.voms/vomses/
echo '"lsgrid" "voms.grid.sara.nl" "30018" "/O=dutchgrid/O=hosts/OU=sara.nl/CN=voms.grid.sara.nl" "lsgrid"'> $HOME/.voms/vomses/lsgrid

	Admin rights

mkdir /etc/vomses
echo '"lsgrid" "voms.grid.sara.nl" "30018" "/O=dutchgrid/O=hosts/OU=sara.nl/CN=voms.grid.sara.nl" "lsgrid"'> /etc/vomses/lsgrid

mkdir -p /etc/grid-security/vomsdir/lsgrid
echo "/O=dutchgrid/O=hosts/OU=sara.nl/CN=voms.grid.sara.nl\n/C=NL/O=NIKHEF/CN=NIKHEF medium-security certification auth" >/etc/grid-security/vomsdir/lsgrid/voms.grid.sara.nl.lsc

create a vomsified proxy

After installing your personal grid certificate you cat create a vomsiefied proxy :

voms-proxy-init --voms lsgrid:/lsgrid/Project_MinE --valid 168:00

Enter GRID pass phrase for this identity:
Contacting voms.grid.sara.nl:30018 [/O=dutchgrid/O=hosts/OU=sara.nl/CN=voms.grid.sara.nl] "lsgrid"...
Remote VOMS server contacted succesfully.

WARNING: VOMS AC validation for VO lsgrid failed for the following reasons:
 LSC validation failed: LSC file matching VOMS attributes not found in store.
AC signature verification failure: no valid VOMS server credential found.

Created proxy in /tmp/x509up_u1001.

Your proxy is valid until Fri Jun 10 14:10:24 CEST 2016

Project_MinE User Interface

Additional features on Mine user interface

So why the switch from the grid user interface to the Mine user interface? Mine user interface has additional features:

	An NFS (Network File System) mount: An NFS mount is present on the Mine user interface which allows the users read-only access to the ProjectMine data without a grid certificate! You can list the files with the following commands:

$ls /projectmine-nfs/
Disk/ illumina_upload/ Tape/ upload/

But commands such as:

$cp test /projectmine-nfs/
cp: cannot create regular file `/projectmine-nfs/test': Read-only file system

will fail. You can copy data from the NFS mount to your home directory, but as you will have limited space on your home directory we recommend caution. Please note that you still need a grid certificate to run the analyses and write files to the grid storage. You can find the information on interacting with grid here http://doc.grid.surfsara.nl/en/latest/index.html. Tips specific to Project_MinE can be found here https://bitbucket.org/JokevanVugt/projectmine_surfsaragrid_example_script

	Additional /scratch space: For the users who wish to upload data to the project but do not have access to a certificate can upload the data to /scratch. The Project_Mine data managers will co-ordinate with those users and transfer the data to the grid storage which can then be accessed via the NFS mount. Please note that the data on /scratch space cannot be directly used for analysis, but needs to be uploaded to the grid storage first. The /scratch space may also be used to run the test jobs.

	Access to the Mine user interface is ssh key authentication based instead of username/password. This reduces the system vulnerability to unwanted users due to weak passwords or shared passwords.

Migration from grid-ui to mine-ui

If you were accessing the Grid facility at SURFsara via the grid user interface (ui.grid.sara.nl), you should follow the procedure below to migrate to the Project_MinE user interface.

	As you have access to the grid-ui, the same credentials also provide you access to the SURFsara user portal https://portal.surfsara.nl/home/. On this page, proceed to the tab ‘Public ssh keys’ and add your public key here. If you are unfamiliar with ssh keys, you can find some basic information here https://doc.hpccloud.surfsara.nl/SSHkey. Please choose a passphrase to protect your public key.

	The MinE user interface can be accessed once the above step is complete. The public key is injected into the MinE user interface and matched with your local private key when you login to the interface

$ssh user@mine-ui.grid.sara.nl # replace user with your username

	To migrate the contents of your home folder from ui.grid.sara.nl to the Project_MinE user interface, you may use the following command from the MinE user interface:

$rsync -a --progress user@ui.grid.sara.nl:/home/user/ /home/user/ # replace user with your username

This will replicate all your files in the home folder on the Mine user interface.

	The software environment set-up on the Project_MinE user interface and ui.grid.sara.nl are similar. Access to Softdrive is also availabe from the MinE user interface through the same path viz. /cvmfs/softdrive.nl/. Grid tools that were available on the ui.grid.sara.nl (e.g., glite-* tools, storage clients, etc.) are also availabe on the Mine user interface.

Guidelines for Mine user interface:

Security of the data is of utmost importance, so of course only the users we provide access to for specific countries will be able to access that data. However, the responsibility also lies with the user to not share their private ssh key and the passphrase with anyone. Violation of this will lead to revocation of the user’s access to the Mine user interface.

RCauth on Project_MinE User Interface with DIRAC + ARC-CE

RCauth authentication

Users need a personal X509 grid certificate to access the grid and data storage at SURF Amsterdam. Each country may have a national Certificate Authority (CA) or multiple CAs which support only some Universities/Research Institutes. As this process is decentralized and every country may not have a CA, this can cause delays for users to get a certificate. The NFS mount service on the mine user interface enables users to copy data from dCache to their local site without a certificate. RCauth allows users to make use of grid storage clients for more efficient data transfers or run their analyses on the grid.

When users start working on the grid, or interact with dCache for data transfers, a proxy (http://doc.grid.surfsara.nl/en/latest/Pages/Advanced/grid_authentication.html) is created based on the user’s certificate. RCauth is a service that allows users to get this proxy without the actual user certificate but instead with username/password
authentication provided by SURFsara. This feature will help users to speed up in getting started without worrying about grid certificates! This document provides information on how to use the RCauth service.

How to use RCauth

SURFsara will provide entitlement to enable existing users to use this service. Future incoming users will be automatically provided with this entitlement when their accounts are created.

	Create a RCauth proxy

Similar to creating a proxy based on the certificate, you can create a proxy by running the following command:

$startGridSessionRCauthDIRAC projectmine.com

This will prompt you for the following response:

Please enter the authentication hash that you retrieved from https://rcdemo.nikhef.nl/projectmine/index_test.php

If X forwarding is enabled (i.e., you logged in as ssh -X user@mine-ui.grid.sara.nl) a browser will direct you to the following portal. If you are logging into the mine-ui from a remote server which does not allow X-forwarding, you can also open the link with a browser from your laptop/desktop, or for a faster reponse you can also open the above link from a browser from your laptop/desktop. You will be directed to the following page:

[image: ../../../_images/rcauth-portal.png]
Click on the start button upon which you will be redirected to the SURFsara portal.

[image: ../../../_images/surfsara-portal.png]
You need to login with the username and password (the same credentials that provide you access to the SURFsara user portal https://portal.surfsara.nl/home). Once you enter the correct credentials you will be redirected to the following pages for agreeing to the terms and conditions available in both English and Dutch.

[image: ../../../_images/consent-personal-info.png]
[image: ../../../_images/rcauth-consent.png]
Please check remember/bewaar toestemming (so you will not be asked again) and click yes/Ja, ik ga akkoord to proceed to the following page:

[image: ../../../_images/rcauth-hash.png]
Copy-paste this ‘hash’ on the mine-ui which will generate a local proxy (valid for 24 hours) stored on the mine-ui and a proxy with correct voms attributes on the myproxy server (valid for 7 days).

$startGridSessionRCauthDIRAC projectmine.com
You do not have X forwarding enabled. Please go with your browser to https://rcdemo.nikhef.nl/projectmine/?role= to
authenticate. Select the 'Research and e-Infrastructures' tab and then 'SURFsara CUA'.

Please enter the authentication hash that you retrieved from https://rcdemo.nikhef.nl/projectmine/.
aa54041e530c2b77521ad60d6a0ded0190dffc2be521e84477aa1c18dc6fcf8d

Three proxies have been created:
- One voms proxy valid for 10 days, uploaded to the MyProxy server px.grid.sara.nl.
- One dirac proxy valid for 10 days, uploaded to the DIRAC proxy server.
- One voms+dirac proxy valid for 24 hours, downloaded to /tmp/x509up_u50354.

This proxy is similar in nature to the proxy created from a grid certificate. The details of the purpose of the proxy, how to retrieve information about the proxy, etc. can be found on the link here - http://doc.grid.surfsara.nl/en/latest/Pages/Advanced/grid_authentication.html

	Renewing a proxy

Please note that the local proxy (/tmp/x509_uxxxxx) is valid only for 24 hours. If you submit jobs from the mine-ui or interact with dCache using the storage clients, make sure the proxy is still valid. If it has expired or will expire sooner than the expected runtime of the jobs you can rerun all the commands above to create a new proxy. A new hash will be generated each time, so you cannot reuse the earlier one.

If you are submitting jobs with the Picas workflow/other workflows the proxy on the myproxy server is valid for 7 days. You should login to the mine-ui and run the above commands again to renew the proxy also on the myproxy server.

	Other points to note

	If you already have a grid certificate, you may still continue to use it.

	RCauth proxy is only enabled for ProjectMinE. If you are involved in other grid projects, you will still need to use the grid certificate.

	The grid certificate uploaded to a web browser provides you access to several EGI websites e.g., https://goc.egi.eu/portal/ where downtimes on several sites can be tracked. Without the grid certificate, you cannot access these sites anymore.

	The proxy creation with grid certificate and RCauth create the local proxy file with the same name (/tmp/x509_uxxxxx). if you created the proxy with one method but wish to switch to the other method, you need to manually remove this proxy file in the /tmp folder.

RCauth on Project_MinE User Interface

RCauth authentication

Users need a personal X509 grid certificate to access the grid and data storage at SURFsara. Each country may have a national Certificate Authority
(CA) or multiple CAs which support only some Universities/Research Institutes. As this process is decentralized
and every country may not have a CA, this can cause delays for users to get a certificate. The NFS mount service on the mine user interface
enabled users to copy data from dCache to their local site without a certificate, however these users could not use grid storage clients for more efficient data transfers or run their analyses on the grid.

When users start working on the grid, or interact with dCache for data transfers, a proxy (http://doc.grid.surfsara.nl/en/latest/Pages/Advanced/grid_authentication.html) is created based on the user’s
certificate. RCauth is a service that allows users to get this proxy without the actual user certificate but instead with username/password
authentication provided by SURFsara. This feature will help users to speed up in getting started without worrying about grid certificates! This document provides information on how to use the RCauth service.

How to use RCauth

SURFsara will provide entitlement to enable existing users to use this service. Future incoming users will be automatically provided with this entitlement when their accounts are created.

	Create a RCauth proxy

Similar to creating a proxy based on the certificate, you can create a proxy by running the following command:

$startGridSessionRCauth lsgrid:/lsgrid/Project_MinE

This will prompt you for the following response:

Please enter the authentication hash that you retrieved from https://rcdemo.nikhef.nl/projectmine/

If X forwarding is enabled (i.e., you logged in as ssh -X user@mine-ui.grid.sara.nl) a browser will direct you to the following portal. If you are logging into the mine-ui from a remote server which does not allow X-forwarding, you can also open the link with a browser from your laptop/desktop, or for a faster reponse you can also open the above link from a browser from your laptop/desktop. You will be directed to the following page:

[image: ../../../_images/rcauth-portal.png]
Click on the start button upon which you will be redirected to the SURFsara portal.

[image: ../../../_images/surfsara-portal.png]
You need to login with the username and password (the same credentials that provide you access to the SURFsara user portal https://portal.surfsara.nl/home). Once you enter the correct credentials you will be redirected to the following pages for agreeing to the terms and conditions available in both English and Dutch.

[image: ../../../_images/consent-personal-info.png]
[image: ../../../_images/rcauth-consent.png]
Please check remember/bewaar toestemming (so you will not be asked again) and click yes/Ja, ik ga akkoord to proceed to the following page:

[image: ../../../_images/rcauth-hash.png]
Copy-paste this ‘hash’ on the mine-ui which will generate a local proxy (valid for 24 hours) stored on the mine-ui and a proxy with correct voms attributes on the myproxy server (valid for 7 days).

 $startGridSessionRCauth lsgrid:/lsgrid/Project_MinE
 You don't have X forwarding enabled. Please go with your browser to https://rcdemo.nikhef.nl/projectmine/?role= to
 authenticate. Select the 'Research and e-Infrastructures' tab and then 'SURFsara CUA'.

Please enter the authentication hash that you retrieved from https://rcdemo.nikhef.nl/projectmine/.
aa54041e530c2b77521ad60d6a0ded0190dffc2be521e84477aa1c18dc6fcf8d

Two VOMS proxies have been created:
- One valid for 7 days, uploaded to the MyProxy server px.grid.sara.nl.
- One valid for 24 hours, downloaded to /tmp/x509up_uxxxxx.
Your delegation ID is: userid

This proxy is similar in nature to the proxy created from a grid certificate. The details of the purpose of the proxy, how to retrieve information about the proxy, etc. can be found on the link here - http://doc.grid.surfsara.nl/en/latest/Pages/Advanced/grid_authentication.html

	Renewing a proxy

Please note that the local proxy (/tmp/x509_uxxxxx) is valid only for 24 hours. If you submit jobs from the mine-ui or interact with dCache using the storage clients, make sure the proxy is still valid. If it has expired or will expire sooner than the expected runtime of the jobs you can rerun all the commands above to create a new proxy. A new hash will be generated each time, so you cannot reuse the earlier one.

If you are submitting jobs with the Picas workflow/other workflows the proxy on the myproxy server is valid for 7 days. You should login to the mine-ui and run the above commands again to renew the proxy also on the myproxy server.

	Other points to note

	If you already have a grid certificate, you may still continue to use it.

	RCauth proxy is only enabled for ProjectMinE. If you are involved in other grid projects, you will still need to use the grid certificate.

	The grid certificate uploaded to a web browser provides you access to several EGI websites e.g., https://goc.egi.eu/portal/ where downtimes on several sites can be tracked. Without the grid certificate, you cannot access these sites anymore. However, you can track the downtimes of sites associated with SURFsara where the project has resource allocation here - http://web.grid.sara.nl/cgi-bin/eInfra.py

	The proxy creation with grid certificate and RCauth create the local proxy file with the same name (/tmp/x509_uxxxxx). if you created the proxy with one method but wish to switch to the other method, you need to manually remove this proxy file in the /tmp folder.

Topos Example

This page presents a ToPoS pilot job example:

Contents

	Topos Example

	Overview of the example

	Quick overview of ToPoS

	ToPoS sample client

	Running the example

	Creating a parameter file for the fractals program

	Getting a unique ToPoS poolname

	Creating ToPoS tokens

	Running the example

	Retrieve the output

Overview of the example

An application called “fractals” needs to be executed in parallel a certain amount of times. Each time, the program is called with a different set of parameters. The parameters for all of these tasks are saved in a file in which a single line contains parameters for a single task.

Using the combination Grid, pilot jobs and the ToPoS service allows the user to run and finish all tasks without having to bother with failures and re-submissions, and make more efficient use of the Grid while doing so.

The pipeline of the job is as follows. We upload the file that contains our parameters to the ToPoS service. After that we submit a parametric Grid job that, in an endless loop:

	asks ToPoS for the next line

	tells ToPoS not to give that line to anybody else as long as it works on it

	calls the fractals program with that line of parameters

	if successful, tells ToPoS to delete that line

	otherwise, tells ToPoS it can give out that same line again

	continues at the beginning of the loop

Quick overview of ToPoS

ToPoS, however, does not work with the notion of lines but rather with a notion of a set (called a “pool”) and items within that set (called “tokens”). ToPoS is a RESTful webservice, and in order to use it, it is helpful to have a notion of the REST-style of software architecture. You can find the reference document for the 4.1 version of ToPoS at ToPoS Reference Manual [https://topos.grid.sara.nl/4.1/reference_manual].

In short, you upload (a set of) information to the ToPoS service, which it makes available for download under a unique token URL. Each token URI exists only in the namespace of a certain pool URI - in other words, each token is part of a pool. The system allows you to ask for the next available token in a certain pool, and optionally lock that token for a certain time. If a token is locked, it means it will not be given out by the service for the specified amount of time. A lock in itself can also be managed through a unique lock URL, meaning you can delete or prolong the lock, if that should be needed.

ToPoS sample client

This example requires a ToPoS library implementing a subset of ToPoS’ features. It is written in Bash script and requires curl and awk to be present. It has been tested on CentOS 6.7 and Ubuntu 14.04. You can find the documentation (including download location) on this library at the ToPoS library for Bash page.

The ToPoS service offers the possibility to upload a text file of which each line will be made a token. We will use this functionality to make a single token of each line in our file with parameters. This way, each token represents a task that needs to be executed on the Grid.

Running the example

Start by downloading and unpacking the necessary files.

	Log in to the User Interface (UI):

ssh homer@ui.grid.sara.nl
replace homer with your username

	Copy the tarball pilot_topos_fractals.tar to your UI directory.

	Copy the fractals source code fractals.c to your UI directory.

	Copy the topos bash client topos to your UI directory.

	Untar the example and check the files:

$tar -xvf pilot_topos_fractals.tar
$cd pilot_topos_fractals/
$mv ../fractals.c ./
$mv ../topos ./
$chmod +x topos
$ls -l

-rwxr-xr-x 1 homer homer convert
-rwxr-xr-x 1 homer homer createFractalsFromTokens
-rwxr-xr-x 1 homer homer createTokens
-rw-rw-r-- 1 homer homer fractals.c
-rw-r--r-- 1 homer homer fractals.jdl
-rw-r--r-- 1 homer homer README
-rwxrwxr-x 1 homer homer topos

	Compile the example:

$cc fractals.c -o fractals -lm

Warning

It is advisable to compile your programs on the User Interface (UI) Machine. The Grid nodes have similar environments and the chance of your job to run successfully on a remote worker node is larger when your program is able to run on the UI.

Creating a parameter file for the fractals program

This example includes a bash script (./createTokens) that generates a sensible parameter file, with each line representing a set of parameters that the fractals program can be called with. Without arguments it creates a fairly sensible set of 24 lines of parameters. You can generate different sets of parameters by calling the program with a combination of -q, -d and -m arguments, but at the moment no documentation exists on these. We recommend not to use them for the moment.

After you ran the createTokens script you’ll see output similar to the following:

$./createTokens
/tmp/tmp.fZ33Kd8wXK

Getting a unique ToPoS poolname

In order to run the tasks we first need to have the ToPoS service create tokens for us, based on the lines in our generated parameter file. Since all tokens need to be part of a pool, we first need to find out a suitable poolname. You can choose anything you like here, but the only way to be sure the poolname does not yet exist within ToPoS and to avoid clashes, we can ask the service for a unique poolname by calling:

$./topos newPool
f24c058fdb6793ed7b6d5ff9

Note that the poolname does not end with a newline in order to make it easier usable by scripts.

Creating ToPoS tokens

Now that we have a poolname, either thought of by ourselves or by the ToPoS service, we can upload the file to the service and have it create tokens:

$./topos createTokensFromLinesInFile f24c058fdb6793ed7b6d5ff9 /tmp/tmp.fZ33Kd8wXK

You might see some HTML output that you can ignore. To check if the request went well you can have a look at your pool by querying the service from a browser. Point it at https://topos.grid.sara.nl/4.1/pools/[POOLNAME]/ and check that it contains tokens by looking under the Content section.

Running the example

Now that the tokens are uploaded we can submit a Grid job. A sample JDL file, submitting 10 jobs at once, is included. You still need to fill in the poolname you use in this file by replacing the placeholder [POOLNAME]. It will call the ./createFractalsFromTokens script, which is the implementation of a simple pilot job that implements the pipeline as described above.

This script calls the fractals program. You can compile it by simply running:

$cc fractals.c -o fractals -lm

To have an impression of how ./createFractalsFromTokens works you can call it on a local Linux machine (providing it can run the topos client and the fractals program):

$./createFractalsFromTokens -p [POOLNAME]

It will recursively generate an image based on parameters received from the specified ToPoS pool, and output the path to the generated image.

You can also submit the JDL file (don’t forget to edit it to include your poolname!) to the Grid and have all tokens processed in parallel. You will be able to see the progress by querying ToPoS through your browser and checking the amount of locks that exist, as well as the amount of tokens that are left.

Retrieve the output

To check if the output is ready you can have a look at your pool by querying the service from a browser. Point it at https://topos.grid.sara.nl/4.1/pools/[POOLNAME].output/ and check that it contains the output of the tokens by looking under the Content section.

Note that for this example, we made the pilot job upload the results to another token pool with the same name as the original token pool and ‘.output’ appended to it. However, this is not default ToPoS functionality, but done for the sake of keeping the example as simple as possible. In a normal situation, you’ll almost always want to transfer the generated image (or whatever output you have) to a storage element or external storage using a supported protocol.

ToPoS Overview

This page is about the ToPoS pilot framework:

Contents

	ToPoS Overview

	About ToPoS

	Security

	File size limitations for Tokens

	An example

	Source Code

	ToPoS clients

About ToPoS

ToPoS is a system that implements pilot jobs. It is a very simple system, which can be very effective. The name of ToPoS refers to Token Pools. The idea is that all a task server needs to provide to pilot jobs is a token which uniquely identifies a task. This token can be as simple as a unique number. All the Pilot job has to do is to map the token to a task, execute it and report back to the token pool server. Then Grid computing comes down to creating lists of tasks, and present them as tokens in a pool.

The user has to create tokens and to submit pilot jobs. The pilot jobs will contact the Token Pool Server and request for a token. The Token Pool Server will hand out a unique token to each requesting job. Of course a pilot job will have to know what to do with the token. The simplest form a token can take is a number. In that case, the pilot job will have to map the number to a specific task it has to compute. When it finishes this task it will delete the token from the Token Pool on the server.

The idea of tokens in a pool can be extended in several ways. Tokens can be files, parameters, numbers etc. What is important about the concept of a token, is that it somehow identifies a unique task to be computed. For example, consider a researcher who wants to align 100 genome sequences against a database using a certain program P. ToPoS can be used as follows. The 100 genome sequences are not very large in size and can be uploaded as tokens in ToPoS. The user can do this with an Internet browser. The database can be expected to be large and it is usually recommended to upload this to a Storage Element and then replicate it several times. He then submits about a hundred or more pilot jobs, each containing the program P and a reference to the database. The job will also contain a command to request a token from ToPoS. ToPoS will get requests from running jobs for tokens (in this case genome sequences). It deals these out uniquely. When a job finishes its computation it will tell ToPoS to delete the token and it will then request a new one. ToPoS will deal out tokens as longs as there are tokens in the pool. In this scenario, it is possible for jobs to receive the same token and that a computation is performed more than once. In general, this is not a problem. However, it is possible to “lock” tokens. When tokens are locked, they will only be dealt out once. Each lock comes with a timeout which means that before the expiration of this timeout a job should confirm possession of the token. If the timeout expires the lock will be removed and the token will be free for distribution.

You can have a peek at ToPoS here: http://topos.grid.sara.nl/4.1/ or here: http://purl.org/sara/topos/latest/

Security

A short note about ToPoS and security:

Please be aware that the topos.grid.sara.nl is a public service that on purpose employs a security through obscurity model. Private and sensitive data shouldn’t be put in your pools.

Anyone knowing the random urls can read and modify your tokens.

File size limitations for Tokens

Although it is possible to upload small files as tokens, be aware that ToPoS is made to process 100’s of request per second; big tokens can be a bottleneck for this performance. Many large files should be put at Grid storage or at a storage location of your choice; putting only filenames in ToPoS can be a helpful approach.

Critical token size is between 100KB and 10MB.

An example

We have an example available on this page Topos Example

Source Code

The source code of ToPoS is on GitHub ToPos [https://github.com/sara-nl/ToPoS].

ToPoS clients

	Bash wrapper: ToPoS Bash client

	Perl client: PerlToPoS

Besides these, ‘wget’ and ‘curl’ can be used in shell scripts or even other languages, to send ‘raw’ HTTP-commands. However, this can get tedious and is error-prone. Client libraries have been written which make accessing ToPoS easier. If possible, we advise you to use one of the above client libraries.

ToPoS Bash client

This page contains information about BashTopos, a bash client for ToPoS:

Contents

	ToPoS Bash client

	Introduction

	Function description

Introduction

There is a bash ‘library’ available to ease the communication with ToPoS. It is written in bash script and requires curl and awk to be present. It has been tested on CentOS 6.7 and Ubuntu 14.04. You can find it here.

To use it, you need to make the file executable:

$chmod +x topos

After that you can call the function:

USAGE: ./topos [command] [arguments]

Where the combination command and arguments is one of:

newPool
createTokensFromLinesInFile [POOLNAME] [FILENAME]
uploadFileAsToken [POOLNAME] [FILENAME]
uploadFilesInDirAsTokens [POOLNAME] [DIRNAME]
nextToken [POOLNAME]
nextTokenWithLock [POOLNAME] [TIMEOUT]
getToken [POOLNAME] [TOKENNAME]
refreshLock [POOLNAME] [LOCKNAME] [TIMEOUT]
deleteLock [POOLNAME] [LOCKNAME]
deleteToken [POOLNAME] [TOKENNAME]

Function description

	newPool
	
Returns a new, unused pool name.

Usage: newPool

Returns the unique new pool name

	createTokensFromLinesInFile
	
Creates a token for each line in a text file.

Usage: createTokensFromLinesInFile [POOLNAME] [FILENAME]

Returns nothing

	uploadFileAsToken
	
Creates a token with the contents of a file.

Usage: uploadFileAsToken [POOLNAME] [FILENAME]

Returns the token name

	uploadFilesInDirAsTokens
	
Creates tokens for each file in a directory.

Usage: uploadFilesInDirAsTokens [POOLNAME] [DIRNAME]

Returns nothing

	nextToken
	
Fetches the next token.

Usage: nextToken [POOLNAME]

Returns the token name (NOT its contents!)

	nextTokenWithLock
	
Fetches the next token and puts a lock on it. The lock description is the hostname.

Usage: nextTokenWithLock [POOLNAME] [TIMEOUT]

Returns the token name (NOT its content!) and on the next line the lock name

	getToken
	
Fetches the content of a token.

Usage: getToken [POOLNAME] [TOKENNAME]

Returns the content of the token

	refreshLock
	
Refreshes a lock so it doesn’t time out.

Usage: refreshLock [POOLNAME] [LOCKNAME] [TIMEOUT]

Returns nothing

	deleteLock
	
Deletes a lock so the associated token becomes available again.

Usage: deleteLock [POOLNAME] [LOCKNAME]

Returns nothing

	deleteToken
	
Deletes a token.

Usage: deleteToken [POOLNAME] [TOKENNAME]

Returns nothing

Perl ToPoS

This page contains information about PerlToPoS, a perl client for ToPoS:

Contents

	Perl ToPoS

	Introduction

	Obtaining PerlToPoS

	Writing ToPoS Clients

	General script structure for shared tokens

	General script structure for exclusive tokens

	Opening an existing pool

	Getting the next token

	Getting the token contents

	Getting the content of a plain text token object

	Getting the file contained in a file token object

	Renewing token locks

	Deleting tokens

	Manipulating ToPoS pool

	Creating a new pool with a random name

	Saving the pool name to a file

	Populating a pool with tokens

	Creating text tokens individually

	Creating multiple tokens from a file

	Creating a file token

	Deleting a pool

	Getting the pool name

	Complete example

	Creating a script to populate a new pool with tokens

	Creating a pilot job

	Creating a job submission file

Introduction

PerlToPoS is a ToPoS client library written in Perl. The library has no dependencies other than those found on all Grid nodes, so including the two modules ‘ToposPool.pm’ and ‘ToposToken.pm’ is enough to run pilot jobs using PerlToPoS.

As an introduction, the following example shows a simple, but functional PerlToPoS client:

use ToposPool;
use ToposToken;

open an existing pool, assumed to be filled with tokens
my $pool = ToposPool -> new ("my_pool");

while (my $token = $pool -> next_token) {

 # process the token, which can contain text or a file,
 # store the results
 ...

when processed, remove the token
 $token -> delete;
}

no more tokens

While the example seems simple and uses no advanced feature like locking tokens, it shows most of what is needed to use ToPoS in Perl scripts. Moreover, it shows that all HTTP commands have been hidden in the objects and methods.

Obtaining PerlToPoS

The PerlToPoS client libraries can be downloaded from GitHub PerlTopos [https://github.com/sara-nl/PerlTopos].

Writing ToPoS Clients

General script structure for shared tokens

For scripts which use shared tokens, no locking mechanism is used, making the script easy. In this case, the structure of pilot jobs will be:

	include the library modules

	
	open an existing pool, either from:
	
	a known pool name, or

	a pool name stored in a file

	
	while there are more tokens:
	
	get the next token

	process the token contents

	store the results

	
	if the token was successfully processed and the results stored:
	
	delete the token

General script structure for exclusive tokens

If tokens are to be exclusive, tokens must be locked and optionally renewed while the computation is still running. A possible structure is then:

	include the library modules

	
	open an existing pool, either from:
	
	a known pool name, or

	a pool name stored in a file

	
	while there are more tokens:
	
	get the next token, locking it

	while not finished:

	process the token contents

	renew the lock

	store the results

	
	if the token was successfully processed and the results stored:
	
	delete the token

Opening an existing pool

To open an existing pool with a known name (or simple name), use the ‘new’ method:

my $pool = ToposPool -> new('name');

This method returns a pool object which has various methods for manipulating the ToPoS pool.

If the pool name was saved in a file (see saving the pool name to a file), the ‘load’ function can be used to read the pool name from a file and open the existing pool with that name. This is again convenient if after populating a new pool with tokens, the pool name was saved to a file. The command is:

my $pool = ToposPool -> load('my_pool_file.txt');

If no pool file is specified, the file is assumed to be ‘pool_id.txt’, which is also the default for saving pools, see populating pools.

Getting the next token

After opening an existing pool, tokens objects can be retrieved from that pool with the ‘next_token’ method:

my $token_object = $pool -> next_token; # no lock

If no arguments are specified, the token is not locked. If an optional argument is specified, it the token is locked for the specified duration in seconds:

my $locked_token = $pool -> next_token(60); # lock for 60 seconds

The ‘next_token’ method returns a ToposToken object (not text!), which can be further inspected using the methods below.

If there are no more tokens, or if all remaining tokens are locked, ‘next_token’ returns ‘undef’, so it can be used in a ‘while’ construct as shown in the introduction.

Getting the token contents

Tokens can contain plain text or a file, depending on what was stored in the token when it was created. To find out what the token contains, use the ‘is_file’ method:

if ($token_object -> is_file) {
 # token is a file
 ...
}
else {
 # token is plain text
 ...
}

Getting the content of a plain text token object

If a token object contains plain text, the text can be retrieved using the ‘content’ method:

my $token_content = $token_object -> content;

Getting the file contained in a file token object

If a token object contains a file, there are two convenient methods:

	‘filename’ which returns the name of the file when it was uploaded, but without any path information;

	‘save’, which will save the file in the current directory (as a safety feature), with the original file name or with the specified file name.

Both methods can be used as follows:

if ($token_object -> is_file) {
 $token_object -> save;
 process_file ($token_object -> filename);
}

where ‘process_file’ is assumed to be some routine responsible for the actual processing, taking a file name as an argument.

The ‘save’ method has an optional argument which stores the file under the given name:

does not use the original name
$token_object -> save('my_file.dat');

Renewing token locks

Locks on tokens can be renewed using the ‘renew_lock’ method, which has an optional timeout. If no timeout is specified, the timeout of the previous lock is reused:

$token_object -> renew_lock; # same timeout as previous lock
$token_object -> renew_lock(600); # 600 second / 10 minute lock renewal

Deleting tokens

After successful processing and storing the results, the token must be deleted from the token pool - otherwise tokens will be recycled and your pilot job will never finish!

Deleting a token is done using the ‘delete’ method on a token:

$token_object -> delete;

Manipulating ToPoS pool

In client scripts, pool objects are only used to get next tokens. In preparation scripts, the methods of a pool object can be used in scripts to manipulate the pool itself, for example to populate the pool with tokens.

Creating a new pool with a random name

A new pool with a random name is created using the ‘new’ method without any arguments:

my $pool = ToposPool -> new();

Saving the pool name to a file

To avoid having to copy-and-paste a random pool name, the pool name can be saved to a file using the ‘save’ method. The method takes one optional argument, the file name. If no file name is specified, the pool name is saved in a file called ‘pool_id.txt’:

$pool -> save("my_pool_id.txt");
$pool -> save; # saves the pool name in 'pool_id.txt'

The pool can be opened again using the ‘load’ method, again with an optional file name:

my $pool = ToposPool -> load("my_pool_id.txt");
my $pool = ToposPool -> load; # loads the pool from 'pool_id.txt'

The file containing the pool name can be used in the InputSandbox in Grid jobs, making it easy to reopen the ToPoS pool from a pilot job.

Populating a pool with tokens

There are three (currently supported) ways of populating a pool with tokens:

	creating text tokens individually

	creating multiple text tokens from a file

	creating file tokens

Creating text tokens individually

To create a token containing text, use the ‘create_token’ method:

create text one token
$pool -> create_token('abc def');

Creating multiple tokens from a file

Multiple tokens can be created from a file if each line in the file contains exactly one token, using the ‘create_tokens_from_file’ method:

create multiple tokens; assume that the file 'input_file_names.txt'
contains a list of input file names which must be processed
$pool -> create_tokens_from_file('input_file_names.txt');

Creating a file token

To create a file token, use the ‘upload_file_as_token’ method:

upload 'input_1.dat', which will become a token
$pool -> upload_file_as_token('input_1.dat');

Deleting a pool

A token pool can be deleted, effectively removing all tokens in the pool, using the ‘delete’ method on a pool:

remove all tokens in the pool
$pool -> delete;

Getting the pool name

If you need to know the name of the pool, use the ‘name’ method:

my $pool_name = $pool -> name;

Complete example

As a complete example, the following scripts will first populate a new pool with numbers; the pilot job will then compute the square of the numbers as a processing stage and store the results in a second pool.

Creating a script to populate a new pool with tokens

The first script populates a new pool with tokens, each of which contains a number. With the two PerlToPoS modules ‘ToposPool.pm’ and ‘ToposToken’ in a fresh directory, create the script:

#!/usr/bin/perl

use ToposPool;
use ToposToken;
use strict;
use warnings;

my $pool = ToposPool -> new ("example_input_pool");

fill the pool with numbers from 1 through 100
for my $i (1..100) {
 $pool -> create_token ($i);
}

done

Run the script - it should run in a few seconds.

After running the script you can verify that the pool was indeed filled with tokens by browsing

http://topos.grid.sara.nl/4.1/pools/example_input_pool

Creating a pilot job

We used a pool named “input_pool” for storing the data which must be processed. For simplicity, let’s call the pool with results “output_pool”. The script for the pilot job is:

#!/usr/bin/perl

use ToposPool;
use ToposToken;
use strict;
use warnings;

my $input_pool = ToposPool -> new ("example_input_pool");
my $output_pool = ToposPool -> new ("example_output_pool");

process input tokens until there are no more tokens

lock the token for 3 seconds
while (my $token = $input_pool -> next_token(3)) {

 # get the text contained in the token
 my $n = $token -> content;

 # 'process' the input data
 my $n_squared = $n * $n;

 # store the results
 my $result = sprintf("The square of %d is %d", $n, $n_squared);

 $output_pool -> create_token ($result);

 # delete the token
 $token -> delete;
}

done

Save the script as ‘example_pilotjob.pl’.

Note that the timeout for a task is set to 3 seconds. It is expected that each task, so processing and storing data, should take no longer than 1 second; the largest delay is in the network traffic to and from ToPoS, and even 1 second is pessimistic. If however some task fails in the processing (in this case very unlikely, but not unlikely in real-world cases) or in the storing phase (real possibility, due to network hiccups), the token is unlocked and available to other pilot jobs.

Creating a job submission file

The job submission file is a regular Job Description Language file with the following properties:

	the job type must be Parametric

	the number of parameters is the number of machines that should be used per job submit

	the executable must be /usr/bin/perl

	the first argument must be the name of the script; so in the example above, the argument is example_pilotjob.pl

	the input sandbox must at least contain the two PerlToPoS perl modules and the name of the pilot job script

We create a job submission file which will start the processing on 5 nodes. Replace <your VO name> with the name of your Virtual Organisation.

example JDL file for the square computation
Type = "Job";
JobType = "Parametric";
VirtualOrganisation = "<your VO name>";
DefaultNodeShallowRetryCount = 5;

Parametrization.
Parameters = 5;
ParameterStart = 1;
ParameterStep = 1;

Specify the input data ...
InputSandbox = {"ToposToken.pm",
 "ToposPool.pm",
 "example_pilotjob.pl" };

Executable and arguments
Executable = "/usr/bin/perl";
Arguments = "example_pilotjob.pl";

Specify output data ...
StdOutput = "stdout_PARAM_.log";
StdError = "stderr_PARAM_.log";

OutputSandbox = {"stdout_PARAM_.log",
 "stderr_PARAM_.log" };

You can submit the job to start the processing. The results are stored back in ToPoS, in

http://topos.grid.sara.nl/4.1/pools/example_output_pool/tokens

Each token contains a result, which you can verify by browsing the tokens.

Note that each pilot job will process the available work. This means that you can submit the job multiple times, each time requesting 5 cores. If more cores are available, this speeds up the processing. When all work is done, the jobs simply quit. This is useful for tasks with longer processing.

System specifications

This page describes the specifications for the underlying Grid resources, both compute and storage systems:

	Gina specifications

	dCache specifications

	Grid User Interface machine

If you have any questions concerning the technical specifications of any of our Grid systems, please contact us at helpdesk@surfsara.nl.

dCache specifications

This page describes the technical specifications for dCache. If you have any questions concerning the technical specifications below, please contact us at helpdesk@surfsara.nl.

Contents

	dCache specifications

	About

	Disk storage

	Tape storage

	Transfer performance

	Bandwidth

	Limits

	Number of transfers per pool

	A single SRM door

About

dCache has the following concepts:

	A pool is a location on a server that can contain files.

	A poolgroup is a group of similar pools, assigned to a user group. Usually the pools are on different nodes to distribute the load.

	Our ~60 pool nodes are also configured as doors.

	A door is a service that can you can contact to send, receive or delete
files or restore files from tape using a specific protocol. Protocols are:

	GridFTP (port range 20000-25000)

	WebDAV

	xroot

	GSIdCap

	dCache also offers NFS doors, but we currently don’t support it; for special cases we might consider supporting this protocol.

	The namespace contains a list of all files and their metadata. The files are structured
in a virtual directory structure, starting with /pnfs/grid.sara.nl/. Each directory can be
mapped onto a pool group. Subdirectories inherit this mapping from their parent directory.

Here’s a list of accessible dCache nodes:

	srm.grid.sara.nl

	dcmain.grid.sara.nl:2288 [http://dcmain.grid.sara.nl:2288] (a dCache web interface showing detailed configuration information)

	pool nodes:

* bw27-{1..9}.grid.sara.nl (decommissioned in November 2017)
* bw32-{1..9}.grid.sara.nl (decommissioned in November 2017)
* by27-{1..9}.grid.sara.nl (decommissioned in November 2017)
* by32-{1..9}.grid.sara.nl (decommissioned in November 2017)
* s35{03,04,06..09}.grid.sara.nl
* rabbit{1..3}.grid.sara.nl
* v40-{8..10}.grid.sara.nl
* whale{1..6}.grid.sara.nl
* mouse{1..16}.grid.surfsara.nl
* cat{1..3}.grid.surfsara.nl
* dog1.grid.surfsara.nl
* guppy{1..16}.grid.surfsara.nl
* hake{1..16}.grid.surfsara.nl
* lobster{1..16}.grid.surfsara.nl
* shark{1..16}.grid.surfsara.nl

We have these DNS round robin aliases pointing to our doors:

	gridftp.grid.sara.nl

	webdav.grid.sara.nl

We’re gradually moving systems to the surfsara.nl domain, so these are more long-term future proof:

	gridftp.grid.surfsara.nl

	webdav.grid.surfsara.nl

The srm.grid.sara.nl will be maintained though because it is hardcoded in a lot of file catalogues and software.

Here are some metrics per user group: web.grid.sara.nl/dcache.php [http://web.grid.sara.nl/dcache.php]

The subnet is 145.100.32.0/22. You may need to change your firewall to access this subnet.

Disk storage

We currently (July 2017) have ~10 petabyte of disk storage capacity. This space is divided over several pool groups. These pool groups are for disk only data, t1d1 data (disk data with a tape replica) and for online caching of tape only data.

Tape storage

The Grid tape storage back-end contains ~30 petabyte of data (July 2017). There are two tape libraries: one in the Digital Realty datacenter and one in the Vancis datacenter, both in Amsterdam Science Park. Some data only has a single copy, but smaller projects typically have a double copy of their tape data.

Transfer performance

Bandwidth

With dCache, we have reached bandwidths up to 25 gigabyte/s, and dCache is probably capable of much more, depending on the circumstances. This bandwidth was reached between the Gina compute cluster and the dCache cluster. Once, during an internal data migration operation, we have transferred 1 petabyte in 24 hours. With external endpoints however, bandwidth is most likely limited by the network path.

Limits

Number of transfers per pool

Each pool supports up to a certain number of concurrent transfers. The specific number for a certain pool group can be looked up in the dCache web interface [http://dcmain.grid.sara.nl:2288/webadmin/poolgroups]. If the limit is reached, transfers will be queued, and they will seem stalled. After some time, transfers may time out. But even if they don’t, your job may waste valuable computing time waiting for input files that don’t arrive.

If that happens, you should reduce your number of concurrent transfers, or ask us whether the limit can be increased. We can not increase the limit endlessly because this would make our systems unstable. Not sure how to proceed? We can help! Contact us at helpdesk@surfsara.nl.

A single SRM door

Also the SRM door has some limitations. There’s only one of that kind, and sometimes it might be a performance bottleneck. It may be wise to bypass the SRM door and use GridFTP and WebDAV doors directly when possible. If in doubt, feel free to contact us for advice.

Gina specifications

Gina is the Grid cluster at SURFsara; currently all the servers are located at the Digital Realty datacenter. After different tenders these servers belong to different brands (Dell & Fujitsu). Three service nodes are used to host virtual machines for different purposes (creamces, monitoring, installation, dns servers…). All the worker nodes are installed on physical nodes.

This page describes the specifications for the Gina Grid cluster at SURFsara:

Contents

	Gina specifications

	Quick summary

	Network

	Worker Nodes

	Service nodes

	CreamCEs

	Queues

If you have any questions concerning the technical specifications below, please contact us at helpdesk@surfsara.nl.

Quick summary

	Gina cluster

	Capacity

	Operating system

	Linux CentOS 7.x 64bit

	Total number of cores

	7408 Xeon cores at 2.2 to 2.6 GHz

	Total memory

	58.3TB

	Total scratch space

	2258TB

Last update: June 2018

Network

GinA and Grid storage share a network backbone, connected with a high throughput network. Currently we have seen over 20GB/sec (~170-200Gbit/sec) of peak network traffic to the Grid storage. All workernodes are connected with a single 10Gbit or 25Gbit ethernet connection.

Worker Nodes

This is the list of the different worker nodes in order of installation/configuration from newest to oldest:

Worker Nodes f18-{01-12}, f19-{01-11}, f20-{01-12}:

* Dell R640
* 2x Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz (40 cores)
* 384GB RAM
* 3TB scratch
* Type: Skylake architecture
* Number of nodes: 35
* Total cores of this type: 1400
* Scratch per core: ~80GB
* RAM per core: 8GB

Worker Nodes f08-{01-16}, f09-{01-16}, f10-{01-16}, f11-{01-16}, f12-{01-17}:

* Fujitsu RX2530
* 2x Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz (24 cores)
* 192GB RAM
* ~2.4TB scratch (SSD only)
* Type: Broadwell architecture /w Broadwell-EP cores (2016)
* Number of nodes: 81
* Total cores of this type: 1944
* Scratch per core: ~100GB
* RAM per core: 8GB

Worker Nodes f03-{01-20}, f04-{01-20}, f05-{01-20}, f06-{01-20}, f07-{01-20}:

* Dell R630
* 2x Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz (24 cores)
* 192GB RAM
* ~8000GB scratch
* Type: Haswell architecture /w Haswell-EP cores (2014)
* Number of nodes: 100
* Total cores of this type: 2400
* Scratch per core: ~300GB
* RAM per core: 8GB

Worker Nodes f13-{01-24}, f14-{01-20}, f15-{01-20}, f16-{01-20}, f17-{01-20}:

* Fujitsu CX250
* 2x Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz (16 cores)
* 128GB RAM
* ~11TB scratch
* Type: Ivy Bridge architecture /w Ivy Bridge-EP cores (2013)
* Number of nodes: 104
* Total cores of this type: 1664
* Scratch per core: ~680GB
* RAM per core: 8GB

Service nodes

Service{01,02,03}:

* Dell R420
* 2xIntel(R) Xeon(R) CPU E5-2420 0 @ 1.90GHz (12 cores)
* 96GB RAM
* Number of nodes: 3
* RAM per core: 8GB

CreamCEs

All 3 CreamCEs are virtualized and distributed among the 3 Service Nodes. Every CreamCE has 4 cores and 9GB RAM in total.

Queues

	Queue

	Max. Walltime (hh:mm:ss)

	VOs(group) allowed

	long

	96:00:00

	geant4 atlas(production) projects.nl(tropomi) virgo lsgrid(mine)

	medium

	36:00:00

	astron atlas alice auger bbmri.nl beapps biomed dans enmr.eu esr geant4 lhcb lofar lsgrid nlesc.nl omegac pvier xenon.biggrid.nl projects.nl chem.biggrid.nl euclid-ec.org drihm.eu virgo skatelescope.eu dune

	short

	04:00:00

	astron atlas auger bbmri.nl beapps biomed dans enmr.eu esr geant4 lhcb lofar lsgrid nlesc.nl omegac pvier xenon.biggrid.nl projects.nl chem.biggrid.nl euclid-ec.org drihm.eu dune

	infra

	00:30:00

	dteam ops pvier

Last update: February 2019

The Grid jobs submitted to the queues above are restricted by the walltime limit, not the CPU limit.

Information on the queues available on the cluster at Nikhef can be found here [https://wiki.nikhef.nl/grid/Grid@Nikhef]

LSG specifications

This page describes the specifications for the Life Science Grid (LSG) clusters. For a list of the clusters, see Life Science Grid clusters.

Contents

	LSG specifications

	Quick summary

	“Classic” hardware setup

	Updated hardware setup

	Worker Nodes

	Classic hardware setup

	Updated hardware setup

	Storage Node

	Computing Element

	User Interface

	Queues

Warning

The Life Science Grid infrastructure is scheduled to be decommissioned mid 2018. After the decommissioning the smaller LSG clusters within the UMC’s and other universities will cease to exist; the large central Grid clusters at NIKHEF and SURFsara will remain. More details about the decommissioning can be found here: https://userinfo.surfsara.nl/documentation/decommissioning-life-science-grid

Quick summary

Last update: December 2016

At the time of writing two different hardware setups coexists in the LSG. The “classic” hardware setup is being progressively replaced by an updated one. The present document will differentiate between this two setups.

“Classic” hardware setup

	LSG cluster

	Capacity

	Operating system

	Linux CentOS 6.x 64bit

	Total number of cores

	128 CPU cores at 2.3 GHz

	Total amount of memory

	512 GB

	Total scratch space

	10TB

	Disk storage

	40TB of staging area

	Network backbone

	10Gbit/s local switch, 1Gbit/s external connectivity

	Clusters still using the “classic” hardware setup:
	
	AMS

	BCBR

	EMC

	RUG

	TUD

Updated hardware setup

	LSG cluster

	Capacity

	Operating system

	Linux CentOS 6.x 64bit

	Total number of cores

	184 CPU cores at 2.2 GHz (Intel Xeon E5-2650)

	Total amount of memory

	656 GB

	Total scratch space

	20TB

	Disk storage

	40TB of staging area

	Network backbone

	10Gbit/s local switch, 1Gbit/s external connectivity

	Clusters using the updated hardware setup:
	
	AMC

	KUN

	LUMC

	UM

	VU

	WUR

Worker Nodes

The jobs will be actually executed on this kind of nodes; this is the hardware specification:

Classic hardware setup

	Dell PowerEdge R815 4xAMD Opteron(tm) Processor 6376

	Type: Bulldozer

	Cores: 64

	RAM: 256GB

	Number of nodes: 2

Updated hardware setup

	Fujitsu Primergy RX2530 M2, Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz

	Type: Broadwell

	Cores: 23 (46 threads with HT enabled)

	RAM: 164 GB

	Number of nodes: 4

Storage Node

This node stores all the data related to the user jobs:

	PowerEdge R515 2xAMD Opteron(tm) Processor 4280

	Type: Bulldozer

	Cores: 16

	RAM: 128 GB

	Number of nodes: 1

	Storage space: 40TB

Computing Element

The Computing Element (CE) is a virtual machine hosted by the corresponding LSG cluster; the CE gets the jobs from the users and sends them to the appropriate WNs:

	Classic hardware setup:
	
	Cores: 2

	RAM: 4 GB

	Number of nodes: 1

	Updated hardware setup:
	
	Cores: 2

	RAM: 8 GB

	Number of nodes: 1

User Interface

Each LSG cluster hosts a User Interface (UI) a virtual machine from where the users can prepare and submit their jobs. Please be aware that this server’s purpose is NOT to execute directly your programs. Use instead Torque commands such us ‘qsub’ to submit your jobs to the Worker Nodes which have more CPU/Memory capacity. The VM specifications of the UI are:
This is a virtual machine running on one of the Service Nodes; please be aware that this server’s purpose is NOT to execute directly your programs. For local datasets every user has a default quota of 50GB, unless more is required for a specific purpose. Temporary datasets may be placed under the /scratch directory, which will be cleaned up periodically. Use instead Torque commands such us ‘qsub’ to submit your jobs to the Worker Nodes which have more CPU/Memory capacity. Thank you for your understanding. The VM specifications of the UI are:

Classic hardware setup:

	Cores: 8

	RAM: 16 GB

	Number of nodes: 1

	Updated hardware setup:
	
	Cores: 8

	RAM: 8 GB

	Number of nodes: 1

Queues

Each LSG cluster offers a set of job queues:

	Queue

	Max. Walltime (hh:mm:ss)

	express

	00:30:00

	infra

	00:30:00

	medium

	36:00:00

	long

	72:00:00

The infra queue is reserved for system checking and maintenance, final users are not allowed to submit jobs to this queue.

The above queues can be used by both grid jobs and PBS jobs.

Grid User Interface machine

The Grid User Interface (UI) machine is a virtual machine. Its specifications are given below.
The hardware specifications of the host machine are also included.

Grid UI machine:

* Virtual machine
* Cores: 4
* RAM: 16 GB

Host machine:

* Poweredge R630
* CPU: Intel Xeon E5645 @ 2.40GHz
* Number of CPU's: 2
* Number of cores per CPU: 6
* Total number of cores: 12
* RAM: 48 GB
* Network: 10 Gb/s

If you have any questions concerning these technical specifications, please contact us at helpdesk@surfsara.nl.

Setup the readthedocs Docker image

Preparation

Before you start with the Docker image, make sure that:

	You have Docker Engine installed [https://docs.docker.com/engine/installation/]

	Docker is running on your host

Build image

The official Docker image can be found in the readthedocs
repository: https://hub.docker.com/r/readthedocs/build/

To pull the image to your laptop, run:

docker pull readthedocs/build

Cheatsheet

Look at the raw version of this file to compare the source and build version: sphinx_cheatsheet.rst

The first lines of this page will also be explained later on in this document (see Links and Titles)

italic word

bold word

This is text in Courier

This is plain text.

	This is a bulleted list.

	…

	This is a numbered list.

	It has two items.

	this is

	a list

	with a nested list

	and some subitems

	and here the parent list continues

Python [http://www.python.org/]

or

SURFsara website [https://surfsara.nl/] (see bottom of the document; that is were we tell Sphinx were SURFsara website should point to)

This is an implicit link to title:

Sample H2

Internal wiki link:

Reference tag: place above a title: .. _my-reference-label:

Then refer to it from another page as. For example, for this cheatsheet: Cheatsheet or ref:other label <cheatsheet>

This is a command:

openssl pkcs12 -in user.p12 -out userkey.pem -nocerts

And this is a code block:

1$openssl pkcs12 -in user.p12 -out userkey.pem -nocerts

H1: document title

Sample H2

Sample H3

Sample H4

Sample H5

Sample H6

And some text.

	Header 1

	Header 2

	Header 3

	body row 1

	column 2

	column 3

	body row 2

	Cells may span columns.

	body row 3

	Cells may
span rows.

	
	Cells

	contain

	blocks.

	body row 4

or

	Column1

	Column2

	value1

	40

	value2

	41

	value3

	42

Note

This is a note box.

Warning

This is a warning box.

See also

This is a simple seealso note.

Your Topic Title

Subsequent indented lines comprise
the body of the topic, and are
interpreted as body elements.

Sidebar Title

Optional Sidebar Subtitle

Subsequent indented lines comprise
the body of the sidebar, and are
interpreted as body elements.

path/to/myfile.txt

A file for download

[image: ../../_images/logo.png]

[image: ../../_images/logo.png]

Install Sphinx

Spider documentation itself is written in restructured text. This page explains how to install
the Sphinx software on your local machine.

Linux

On recent CentOS distributions, Sphinx is included in
epel [https://fedoraproject.org/wiki/EPEL]. Fedora has it included in the
standard distribution. Install sphinx with:

sudo yum install python-sphinx

On Ubuntu, install with:

sudo apt-get install python-sphinx

Mac OS X

On Mac OS X, you will need macports [https://www.macports.org], so get that
if you have not done so.

Next, follow the instructions on the
sphinx installation page [http://sphinx-doc.org/install.html].

Warning

the standard terminal in Mac OS X has locale settings incompatible with sphinx; to change it once for a terminal session, type:

export -n LC_CTYPE

To change it permanently:

	open the terminal preferences

	go to the tab ‘advanced’

	uncheck “Set locale environment variables on startup”

Style guidelines

This page provides some style guidelines for the grid documentation.

General

	Use simple language. Not “The command results in an effective release of the file”, but “The command releases the file”.

Use of capitals

	Titles With All Capitals? -> Only the first word.

	The grid or the Grid? -> The Grid.

	Grid Certificate or grid certificate? -> Grid certificate.

	Certificate Authority? -> First time per page “Certificate Authority (CA)”, then CA with :abbr: tag. Same for:

	First time per page Life Science Grid (LSG), then LSG.

	Virtual Organisation (VO), then VO.

	User Interface (UI), then UI.

	GridFTP, gridFTP or gridftp? GSIdCap? -> GridFTP, GSIdCap, WebDAV

	OutputSandbox or output sandbox? ->

	OutputSandbox is the statement in the JDL. Better: OutputSandbox statement.

	output sandbox is the location where the output files are returned.

	dCache (name), startGridSession (command): no capital, even at start of sentence.

Acronyms

	In general: avoid acronyms. When you want to use them, the first occurrance on a page should explain them: Certificate Authority (CA).

	Sphinx supports a :abbr: tag, see http://www.sphinx-doc.org/en/stable/markup/inline.html#other-semantic-markup. Here’s a test: CA

Shell commands

	When you want to display commands and their output, use .. code-block:: console. Prefix each command with a $, without space.

$echo 'Hello World!'
Hello World!

	When you want to display commands and comments, use .. code-block:: bash. Don’t prefix commands. Example:

1. VOMS server: create a voms proxy with voms extensions that enables you to access the Grid for *12 hours*.
voms-proxy-init --voms lsgrid # Replace lsgrid with your VO

	When you want to display commands, output and comments, use .. code-block:: console. Prefix commands with a $ and prefix comments with ##, otherwise they are marked up as a command. Example:

$echo 'Hello World!'
Hello World!
Comments should be prefixed with a double ``#``.

	To display the contents of a shell script, use .. code-block:: bash.

	To display perl, use .. code-block:: perl. If a page only displays perl code, you can use .. highlight:: perl once and then :: for each code block.

	To display configuration files, use .. code-block:: cfg.

Markup

	literal markup for:

	pieces of code

	commands

	arguments

	file names, hostnames

	a specific term, when emphasis is on its name:

	Example: a language called job description language

	But: a JDL file is written in the job description language.

	configuration file statements and values

	Bold for strong emphasis. Example: “Only you are allowed to know the contents of this key.”

	italic for moderate emphasis. Example: “You can continue only after you have completed the preparations.”

 _images/globusonline-dcache6.png
& [File Manager Panels [[0

: Q_ search

) Collection | surf#dCache_gridftp

Path /pnfs/grid.sara.nl/data/lsgrid/SURFsara/ H

Start) % Transfer & Sync Options @ start

= HelixNebula s | g share

3/26/2018, 2:39 PM -

\ Transfer or Sync to... || fora collection to begin
= luuku N ;
L sz7200 1:20om New Folder
b itarted by taking a short tour.

= maithilk N

9/23/2019, 2:05 PM -
D myrandomlg

3/26/2018, 2:23 PM. 1GB
= natalie N

2/11/2021, 4:06 PM -

_images/globusonline-download.png
& @ Download Globus Connect Personal

@ Globus Connect Personal allows you to share and transfer files to and from your laptop or desktop computer. Download Globus Connect
Sl Personal below and follow the install steps to turn your personal computer into a Globus collection. Learn more about Globus Connect
Personal (2) .

‘ ' Download Globus Connect Personal for Mac

globus

connect
personal

Show me other supported operating_systems

_images/globusonline-dcache4.png
(©) Endpoints £ surf#dCache_gridftp

= (i) ovenview E5 server @ Collections
e =

Display Name
Advertised Owner
Original Owner
Description
Keywords

User Message
User Message Link
Endpoint Info Link
Contact Email

Organization

Department

surf#dCache_gridftp
surfsara@globusid.org

surfsara@globusid.org

dCache gridftp servers at SURFsara

(not set)
(not set)
(not set)
(not set)
(not set)
(not set)

(not set)

"I/ Your activation expires in 12
hours (10:31am on Wednesday,
March 17th, 2021)

Extend Activation

Deactivate

£ Open in File Manager

_images/globusonline-dcache5.png
& (©) Endpoints £ surf#dCache_gridftp

Display Name
Advertised Owner
Original Owner
Description
Keywords

User Message
User Message Link
Endpoint Info Link
Contact Email

Organization

@ Collections

surf#dCache_gridftp

surfsara@globusid.org
surfsara@globusid.org

dCache gridftp servers at SURFsara
(not set)

(not set)

(not set)

(not set)

(not set)

(not set)

"/ Your activation expires in 12

hours (10:31am on Wednesday,

March 17th, 2021)

Extend Activation

_images/globusonline-local-files.png
& @ Collection Search
m@m Collection

Start typing the name of a data collection or select one below

@ Recent u Bookmarks g Your Collections @ Shared With You @} More Options

% MyLocalCollection O;f

_images/globusonline-local-transfers1.png
g'_*) {7 Collection Search

9

Collection ‘

e Cancel
Start typing the name of a data collection or select one below
(%) Recent D Bookmarks 3 Your Collections @ Shared With You {fq”} More Options.
I MyGridUICollection 7 T
MyGridUICollection /~/ 7 W
MyLocalCollection 7 T
MyLocalCollection /= s w
I surf#dCache_gridftp 7 T
surfiidCache_gridftp /pnfs/grid.sara.nl/data/lsgri/SURFsara/ 7 W

_images/globusonline-dcache2.png
Display Name
Advertised Owner
Original Owner
Description
Keywords

User Message

User Message Link

@ Collections

surf#dCache_gridftp
surfsara@globusid.org
surfsara@globusid.org

dCache gridftp servers at SURFsara
(not set)

(not set)

(not set)

You have no active transfer

credentials for this collection.

) Open in File Manager

_images/globusonline-dcache3.png
o (©) Endpoints £2 surf#dCache_gridftp

= (i) ovenview E5 server @ Collections
e =

) Please authenticate to access surf#dCache_gridftp

Login Server pxgridsaranl /' Edit

Username homer

Password

Advanced

Authenticate

_images/globusonline-create-endpoint.png
& @ Endpoints

©

ENDPOINTS

@ Recently Used In Use @

Search all endpoints

Shareable By You

Liok

Shared With You

@ Create a personal endpoint

0>A Administered By You

You have no endpoints in use. You have no transfers in progress. If this is unexpected, you may want to view your transfer activity .

_images/globusonline-dcache1.png
(o) Endpoints

surfitdCache_gridftpl () @ Create a personal endpoint

() Recently Used In Use @ Shareable By You @ Shared With You

AL Administered By You

ENDPOINT STRICT STATUS ROLE SHARED
surf#dCache_gridftp active
Public Endpoint

ORI

nav.xhtml

 Table of Contents

 		
 Grid documentation

 		
 About the Grid

 		
 Introduction to Grid

 		
 To use the Grid or not

 		
 How it works

 		
 Dutch National Grid

 		
 About

 		
 National and European

 		
 Grid services

 		
 About

 		
 Support

 		
 How to get access

 		
 Access to the National Dutch Grid

 		
 Estimate your resource needs

 		
 Prerequisites

 		
 Preparation

 		
 Get a User Interface account

 		
 Get a Grid certificate

 		
 Sectigo certificate

 		
 DutchGrid certificate

 		
 Join a Virtual Organisation

 		
 First Grid job with Dirac

 		
 Grid job lifecycle

 		
 Dirac proxy creation

 		
 Describe your job in a JDL file

 		
 Submit the job to the Grid

 		
 Track the job status

 		
 Cancel job

 		
 Retrieve the output

 		
 Check job output

 		
 Recap & Next Steps

 		
 Grid software

 		
 Softdrive

 		
 CVMFS

 		
 Quickstart

 		
 Python on the Grid

 		
 Softdrive anaconda

 		
 Docker

 		
 Grid storage

 		
 About Grid storage

 		
 dCache

 		
 Grid file identifiers

 		
 Transport URL or TURL

 		
 Storage URL or SURL

 		
 Default ports

 		
 Storage clients

 		
 Staging files

 		
 gfal2 python API

 		
 Monitor staging activity

 		
 Unpin a file

 		
 Checksums

 		
 Transport security

 		
 SRM interaction example diagram

 		
 Importing large amounts of data

 		
 Grid job requirements

 		
 Requirement syntax

 		
 Requirements

 		
 Specifying Wall Clock time via the queue

 		
 Specifying CPU Time

 		
 Selecting particular Grid site or CE

 		
 Multicore jobs

 		
 Grid certificates

 		
 Certificate and key file inspection

 		
 Using the modulus to see whether a key and a certificate match

 		
 Finding the expiry date of your certificate

 		
 Finding the subject of your certificate

 		
 Conversion of key and certificate formats

 		
 Converting from PKCS12 to PEM

 		
 Converting from PEM to PKCS12

 		
 Grid host certificates

 		
 Certificate Revocation Lists

 		
 Telling your browser to trust host certificates

 		
 Parametric jobs

 		
 About

 		
 Example

 		
 Bootstrap application

 		
 Problem description

 		
 Quickstart example

 		
 Preamble

 		
 Run locally

 		
 Run on the Grid

 		
 Pilot jobs

 		
 About pilot jobs

 		
 Pilot Job Workflow

 		
 Pilot job database

 		
 Pilot job advantages

 		
 Pilot job submission

 		
 Pilot Job Frameworks

 		
 GPU jobs

 		
 About GPU jobs

 		
 GPU job submission

 		
 Quick GPU example

 		
 Example GPU Job

 		
 Downtimes and maintenances

 		
 Ongoing maintenances

 		
 Upcoming maintenances

 		
 Statistics and monitoring

 		
 SURFsara systems

 		
 NIKHEF facility

 		
 EGI accounting and operations portals

 		
 Frequently asked questions

 		
 Getting started

 		
 I never worked with the Grid before. Where is a good starting point?

 		
 Where can I lookup up Grid terms?

 		
 Certificates

 		
 How can I change my Grid certificate password?

 		
 Unable to load certificate error

 		
 What are the correct permissions for my certificate files?

 		
 Couldnâ��t find valid credentials error

 		
 Get non-vomsified proxy locally

 		
 How can I renew my certificate?

 		
 Does my key match the certificate?

 		
 What is the expiry date of my certificate?

 		
 What is the expiry date of my VO membership?

 		
 How can I see the subject of my certificate?

 		
 Using resources

 		
 How many cpuâ��s, nodes does the Grid offer?

 		
 How many cpu hours are available?

 		
 What is the average amount of memory available per node?

 		
 What is the data transfer speed between Grid locations?

 		
 How can I calculate the total CPU time I consumed?

 		
 System usage and CPU efficiency

 		
 How can I find all the available Storage Elements and get their SURLS?

 		
 How can I find all the available Compute Elements and use in my JDL?

 		
 How to run PBS jobs with wallclock greater than 36 hours on local clusters?

 		
 How to use the Grid worker node /scratch on Gina?

 		
 Troubleshooting

 		
 General troubleshooting steps

 		
 How can I get more logging info for my job?

 		
 File transfers are stuck

 		
 Documentation how-to

 		
 Contribute through GitHub

 		
 Edit with Sphinx language

 		
 Build the documentation locally

 		
 Docker image

 		
 Sphinx local installation

 		
 Github edit/preview

 		
 Cookiebeleid

 		
 Wat is een cookie?

 		
 Google Analytics

 		
 In- en uitschakelen van cookies en verwijdering daarvan

 		
 Meer informatie over cookies?

_images/globusonline-ui-endpoint3.png
[File Manager Panels [[0

Collection | MyGridUICollection : Q_ search

Path [~/ N

Start ®) % Transfer & Sync Options @ start

= arcce-tests N @ Share
2/16/2021, 4:15 PM -
"\, Transfer or Syncto.. | colection to begin
D bootstrap1.log .
5/13/2020,1:54AM 08 [T NewFolder

fted by taking a short
= certificates-digicert-migration
3/24/2020, 1:20 PM -

> tour.

_images/globusonline-ui-transfer2.png
& [File Manager Panels [00 1
=

Collection MyGridUICollection

surf#dCache_gridftp Q.

Path | /~/ I Ipnfs/grid.sara.nl/data/lsgrid/SURFsara/natalie/ H

25 Transter 5 Sync Options @ surt

= arcce-tests Share @ = ada4nlesc N
2/16/2021, 4:15 PM -~ 2/11/2021, 4:05 PM -
Transfer or Syncto.. "\,
D bootstrapL.log : f— africarain N
5/13/2020, 11:54 AM o8 New Folder 2/11/2021, 4:07 PM -

= certificates-digicert-migration D README.md
3/24/2020, 1:20 PM -~ 3/16/2021, 11:30 PM 2558

= Downloads
3/10/2017 1052 M —

0O 0O 0O O

flowers jpg

5/13/2020, 11:13AM 12139 KB

.~ globusconnectpersonal-3.1.3

_images/globusonline-ui-transfer1.png
g'_*) {7 Collection Search

] Collection ‘

(%) Recent D Bookmarks 3 Your Collections @ Shared With You {fq”} More Options.

MyGridUICollection

> T

MyGridUICollection . 7 W
Open n Fils Manager

I MyLocalCollection 7 T

MyLocalColection /~/ 7 W

I surf#dCache_gridftp 7 T

surfiidCache_gridftp /pnfs/grid.sara.nl/data/lsgri/SURFsara/ 7 W

_images/job_flow.png
Read files
Write files

Job + Input sandbox
+ Output sandbox

Job I

t sandbox

Outy

Job + Input sandbox

E
8
£
8
H
g
El
g
8
W

_images/globusonline-ui-transfer3.png
Recent

Filter tasks

MyGridUICollection to surf#dCache_gridftp >
transfer completed — few seconds ago

MyLocalCollection to surf#dCache_gridftp >
transfer completed — 8 minutes ago

_images/globusonline-setup-client.png
Account ¥

Globus Connect Personal Setup would like to:
@ View identity details @
@ View your identity (i)

@ View information about your linked identities @

@ Create Globus Connect Personal collections in the Globus Transfer service @

Provide a label for future reference ‘ MyLocalMachine

You can rescind this consent at any time by visiting the Manage Consents (7] page.

By clicking "Allow", you allow Globus Connect Personal Setup, in accordance with its terms of service
{7} and privacy policy [z , to use the above listed information and services.

_images/globusonline-login.png
Not Logged-In

globus @ ID

Need a Globus ID? Sign Up

Log In with Globus ID

The client Globus Auth is requesting access to your globusid.org account for accessing a
third-party website or application located at auth.globus.org. If you approve, please log in to

continue.

Username natalieda @globusid.org

Password seeesccccssssce

Forgot password?

_images/globusonline-start-client.png
globus

connect
perconal

Advanced Options

_images/globusonline-setup-client2.png
[JONO) Globus Connect Personal Setup

Collection Details

(o]

Owner Identity natalieda@globusid.org

Collection Name MyLocalCollection

Description SURF local machine

Choose this option only if your computer stores
High Assurance | | sensitive data such as Protected Health Information or
Controlled Unclassified Information.

Save

_images/globusonline-ui-endpoint2.png
[0 [Collection Search
’i;ﬂ Collection .

Start typing the name of a data collection or select one below

(%) Recent D Bookmarks &3 Your Collections @ Shared With You {§} More Options.

£ MyGridUiCollec

£ MylocalCollection

_images/globusonline-ui-endpoint.png
(o) Endpoints

(%) Recently Used In Use

ENDPOINT

MyGridUICollection
Globus Connect Personal

MyLocalCollection
Globus Connect Personal

Search all endpoints

Shareable By You

STRICT

&)

STATUS

ready

ready

. @ Create a personal endpoint

Shared With You A Administered By You

Filter administered by you .

ROLE SHARED

o>

o>

_images/globusonline-local-transfers3.png
g'_*) {7 Collection Search

= Coiection ‘ |

Start typing the name of a data collection or select one below

(%) Recent D Bookmarks 3 Your Collections @ Shared With You {fq”} More Options.

I MyGridUICollection 7
MyGridUICollection /~/ » uy
I MyLocalCollection 7
MyLocalCollection < W
surf#dCache_gridftp 7
surfitdCache_griditp /pnfs/grid.sara.nl/data/lsgrid/SURFsara/ < y

_images/globusonline-local-transfers2.png
& [File Manager Panels [00 1

9

Collection

Path

MyLocalCollection : Q_ search

I~ []
Start) % Transfer & Sync Options @ start

Transfer or Sync to... \ Search for a collection to begin

ada4nlesc
9/22/2020, 7:44 AM —

africarain
7/29/2020, 955 AM —
Get started by taking a short tour.

Applications
3/16/2019, 12:00 PM -~

_images/globusonline-local-transfers5.png
Filter tasks

MyLocalCollection to surf#dCache_gridftp >
N vanstercompiete — a few seconds ag0

_images/globusonline-local-transfers4.png
& [File Manager Panels [00 1

9

Collection | MyLocalCollection

surf#dCache_gridftp Q.

Path /~/adadnlesc/ H Ipnfs/grid.sara.nl/data/lsgrid/SURFsara/natalie/ H

25 Transter 5 Sync Options @ sart

[} [course_package share 7] F— adadnlesc N
9/22/2020, 8:17 AM - 2/11/2021, 4:05 PM -
Transfer or Sync to... \
o D LICENSE : f— africarain N
9/22/2020,7:44AM 1135K8 New Folder | 1202, 407PM —

README.md

20, 7:44 AM

_images/Firefox-find-certificate-issuer.png
[JoNO] '\ Certificate Viewer: "“www.ggus.eu”

General | Details

Certificate Hierarchy

< Deutsche Telekom Root CA 2
< DFN-Verein PCA Global - GO1
~ KIT-CA
WWW.ggus.eu

Certificate Fields

~ wExtensions
: -Certificate Policies
Certificate Basic Constraints
Certificate Key Usage
-Extended Key Usage
Certificate Subject Key ID
-Certificate Authority Key ldentifier
Certificate Subject Alt Name
~CRL Distribution Points
Authority Information Access

Field Value

Mot Critical
http://ocsp.pca.dfn.de/0CSP-Server/0CSP
URI: http://cdpl.pca.dfn.
http://cdp?.pca.dfn.

_images/LSG_700px.png

_images/Black_hole_connection.png
Black hole connection

www websequencediagrams.com

_images/consent-personal-info.png
Consent about releasing personal information

English | Nederlands

RCAuth.eu WAYF requires that the information below s transferred.

@ Remember

{es Goniiusl N, cancel

Information that will be sent to RCAuth.eu WAYF
urn:oid:2.5.4.3
Maithili Kalamkar

urn:oid:2.5.4.4
Kalamkar

urn:oid:0.9.2342.19200300.100.1.3

maithil kalamkar@surfsara.nl

.9.2342.19200300.100.1.1

urn:oid:1.3.6.1.4.1.5923.1.1.1.7

umix-surfsaraisurf.nl:rcauth.eu:user

.1.4.1.25178.1.2.9

maithilk_43632@surfsara.nl

:2.16.840.1.113730.3.1.39

Copyright © 2007-2017 UNINETT AS

_images/cua-portal-addssh.png
4 Home
& Your Profile

E Accounting

ﬁ Public ssh keys

&, Change password

% Helpdesk

(= Logout

Manage your SSH keys

SSH key

CUA password

ssh-rsa
AAAAB3NzaClyc2EAAAADAQWCDWABAQC4WAO7kqgpaGij82k0V3BnxgESOlwhYo8mznEe5RrzW181m66a26QSCqxL2P12n1hHo9g5gJX+4bRfb3slksriBnpMgtiTem8H
POGOONQRUWLENLWMTJ I 1cWILEF3S2ZUnhVESn+v7b9ICB/cWer jsoyETMg6 jwIxgMd154Dgheylob/ADEmRtuEWSMF3e jnBt IcNg41Xiyhi/
hkRS5YX00ntySRREWseE2Yr870ovcul/dzxQPQJ+Rws4VB1Qwle2597yU/AINjRHBrCrUzixqtYscVP1SwjpMIDOYNgEKIpnOuuY9yg87P2M8Sne3raXeWD

Add sshkey

_images/Using_SRM.png
Using SRM

cerificate
You'e authenticated
nline <SURL>

File ransfer

F A
3 &
2 3|
5
£ 4
I| 9

Proxy certificate
smGet <SURL>

Is <SURL> online?
Yes, <SURL> s online.

www.websequencediagrams com

_images/Using_the_File_Transfer_Service.png
Using the File Transfer Service

{for sach fil in job]

_prepare for transfer,

H repars for transfer

start transfer

___ GridFTP file transfer

p result

|

i esult

fis-transfer-status

result

waww websequencediagrams com

i

_static/plus.png

_images/dutchgrid_retrieve_cert.png
0 D e S A L S s ——————

Certificates Actions View Help
Certificate of Anatoli Danezi
Your request has been accepted, you can now retrieve your certificate.

Name: Anatoli Danezi
Organisation: DutchCGrid, users, SARA
Valid: pending
< Details
DN: /0=dutchgrid/0O=users/0O=sara/(N=Anatoli Danezi
Modulus: fIf3efS0af09b87dbof8...

Subject Hash: 7b9da4f3
Key algorithm: RSA 2048
Location: /Users/natalie/.globus

_images/fts-transfers.png
Transfer '9a718fee-8af3-11eb-ad12-fa163e7fa8c6' FINISHED

22VO: ofar/user/sksp

2 Delegation ID: 343cete83deftafo
O Submitted time: 2021-03-22T08:47:237
© Job finished: 2021-03-22T09:47:272

& Received by fis ms4 surfsara.ni
X Overwrte fiag:

* priorty: 3
4 Bring online: -1

Metadata:

null

Total size

21.28 uin

Done

21.28 nin

S Jobtype:N
@ Cancel flag:
© Pin ifetime: -1

Submission time start time

2021-03-22109:47:232 2021-03-22109:47:252

(+28)

Running time

Avg. file throughput Current job throughput

35.46 Ma/s -

Showing 1 to 3 out

SUBMITTED | DELETE READY

First | Provious

rile
4 7208116

& sm//arm.grid.
Ay R—
4 720117

& sm//arm.grid
FRER——
4 720110

& sm//arm.grid

Ry ——

of3

STAGNG ACTVE STARTED | CANGELED PALED 3 FnisHeD [RARTE
Nex | Last

Pilesute rie sie ra— Remaniag start Tise

B - 30,76 w/a o 2021-03-22709:47:252

sara.nl:s443/pnes/grid.sara.

sara.nl:s443/pnes/grid.sara.

8.8 min

sara.nl:s443/pnes/grid.sara.

sara.nl:s443/pnes/grid.sara.

6.29 wia

sara.nl:s443/pnes/grid.sara.

sara.nlis443/pnes/grid. sara.

51/data/Lotar /user/aksp/archive/AGLOR/ logs /schedulex/2018-09-01 . tax

n1/data/lotar /user sksp/distr ib/distrib_natalie/2018-09-01 4. tar.g2

4017 wa/s - 2021-03-22705

75252

51/data/Lotar /user/aksp/archive/AGLOR/ logs /schedulex/2018-09-02. tax

R1/data/lotar /user/sksp/distrib/distrib natalie/2018-09-02.tax. g2

3146 ua/s B 2021-03-22705

75252

51/data/Lotar /user/aksp/archive/AGLOR/ logs /schedulex/2018-09-03. taz

R1/data/lotar user sksp/distrib/distrib natalie/2018-09-03.tax. g2

Pinish Tine

2021-03-22705,

52

2021-03-2270,

52

2021-03-22705,

52

Staging seare Staging Ead

_images/cyberduck-usercert-4.png
7~ Choose

The server requires a certificate to validate your identity. Select the certificate
- to authenticate yourself to webdav.grid.sara.nl.

no Zweers onno.zweers@surfsara.nl (TERENA eScience Personal CA 3)

Show Certificate Disconnect Choose

_images/cyberduck.png
L] webdav.grid.sara.nl - WebDAV (HTTPS)

K51 WebDAV (HTTP/SSL)

‘webdav.grid.sara.nl - WebDAV (HTTPS)
hitps://homer@webd...a.nl/data/usersmomer

webdav.grid.sara.nl Port: (443

/pnfs/grid.sara.nl/data/users/homer

Connect Mode: | Defau

Encoding: | Default

-
Downioad Folder: | 1] Downloads

Dofault

Jow

utc

_images/globusonline-bookmark3.png
g'_*) [File Manager

) Collection MyGridUICollection

Path /~/

Bookmark MyGridUICollection

Q_ search

Panels [[0 1

Create Bookmark 9%

_images/globusonline-bookmark1.png
) Collection | surf#dCache_gridftp

Q_ search

Path /pnfs/grid.sara.nl/data/lsgrid/SURFsara/ H

Bookmark surf#dCache_gridftp Create Bookmark 9%

_images/globusonline-bookmark2.png
[File Manager Panels [00 1

Collection | MyLocalCollection

Q_ search

Path | /~/ N

Bookmark MyLocalCollection Create Bookmark 9%
Start) % Transfer & Sync Options @ start

_images/surfsara-portal.png
SARA

Enter your username and password

A service has requested you to authenticate yourseif. Please enter your
usemame and password in the form below.

Username
Password
Note:

login with your user/password

_images/rcauth-portal.png
\\\M 45 E Make it yours

ProjectMinE one-time-password certificate service

Request VOMS Role (optional);

start

_static/minus.png

_static/file.png

_images/parametric_jobs.png

_images/logo.png

_images/rcauth-consent.png
RCauth{_.eu

RCauth.eu Online CA consent page
The MasTReMBItRIAPRIBRRAARCh AR Colahasatian AuthaptisationLASsryise ferkurope

If you approve, please accept, otherwise, cancel.

Details on which attributes are released, why, to whom, and how they are processed can be found in the RCauth Pilot ICA G1 CA privacy policy.
For further information on the CA see the RCauth.eu homepage.

Remember

Yes, continue o, cancel

Measter Portal Information:

Name: EGI Checkn Master Portal
Description: EGI Checkin Master Portal

URL: hitps:,

aai.egi.eu/mp-oa2-client

Information that will be sent to the Master Portal:

sub maithilk_43632@surfsara.nl

cert_subject_dn : CN=Maithili Kalamkar bmWBCdSnRthmzSap, 0=surfsara.nl,DC=rcauth-clients, DC=rcauth, D

_images/picas_views.png
I data || S] | data ||

‘ map: emit(doc.type, 1);
}

cumulative cumulative cumulative

function(doc) { J

function(key, values, rereduce) {
reduce: return sum(values);
}

_images/rcauth-hash.png
Dear IS surfsara.nl,

Please start startCridsessionRCauth on the mine-ui and enter the following hash:

2a54041e530c2b77521ad60d6a0ded0190df fc2be521e84477aalc18dc6fcf8d

NOTE:

« This hash will expire in 10 minutes (at 15:13:51 UTC)
 You can use this link only once

return to client

_images/cyberduck-usercert-2.png
1 WebDAV (HTTP/SSL)

Nickname: | webdav.grid.sara.ni cert

janonymous@web:

rid. 1:2882/pnfs/grid.sara.ni/data A\
port: | 2882

URL: htpss

Anonymous Login

¥ More Options.

Path: | fons/gric.sara.ngata/

Connect Mode: | Default

Encoding: | Default

se Public Key Authe
No private ey seected

ation

Dounload Foider: | (51 Donloads

Transfer Files: | Default

il o1 o

Web URL:

Notes:

Timezone: UTC

_images/cyberduck-usercert-3.png
eoe &) webdav.grid.sara.nl cert

(% B »|[c]7

Open Connection Quick Connect Action _Refresh _Edit

[Unregistered |

© @[« »

webdav.grid.sara.nl
webdavgrid saranl
hitps:jonno@ebdav.grid.sara.nijonfsfard.sara.nfdata

webdav.grid.sara.nl cert
webdav.grid.sara.nl

[————— /pnfs/grid.saranijdata

Connect to server

New Bookmark 828

+|Z1-

Delete Bookmark
Edit Bookmark %E
Duplicate Bookmark

Sort By >

2 Bookmarks.

_images/cyberduck-usercert-1.png
oo Keychain Access
‘\‘ Click to lock the login keychain.

Keycnains

Onno Zweers onno.zweers@surfsara.
Issued

TERENA eScience Personal CA 3
Expires: Thursday, 7 December 2017 at 13;
©This certificate s valid

& system
O System Roots

100 Central European Standard Time

Name ~ Kind

Expires
> [5] com apple.idms.appl..15340646e4547513030

certiicate 26002017,211609 login
oo » [com.apple.dms.appl..15340646e454751363d _certificate 2612017, 211609 login
ategory
A Alltems
Passwords

| Secure Notes.
[My Certificates
? Keys

[Certificates

=

3items

